In the towed line array sonar system,the tow ship noise is the main factor that affects the sonar performance.Conventional noise cancelling methods assume that the noise is towards the endfire direction of the array.A...In the towed line array sonar system,the tow ship noise is the main factor that affects the sonar performance.Conventional noise cancelling methods assume that the noise is towards the endfire direction of the array.An acoustic experiment employing a towed line array is conducted in the western Pacific Ocean,and a strange bearing-splitting phenomenon of the tow ship noise is observed in the array.The tow ship noise is split into multiple noise signals whose bearings are distributed between 10°and 90°deviating from the endfire direction.The multiple interferences increase the difficulty in recognizing the target for the sonar operator and noise cancellation.Therefore,making the mechanism clear and putting forward the tow ship noise splitting bearing estimation method are imperative.In this paper,the acoustic multi-path structure of the tow ship in deep water is analyzed.Then it is pointed out that the bearing-splitting phenomenon is caused by the main lobe of direct rays and bottom-reflected rays,as well as several side lobes of direct rays.Meanwhile,the indistinguishability between the elevation angle and the bearing angle due to the axial symmetry of a strict horizontal line array causes the bearing to deviate from the endfire direction.Based on the theory above,a method of estimating bearing of the tow ship noise in deep water is proposed.The theoretical analysis results accord with the experimental results,which helps to identify the target and provide correct initial bearing guidance for noise cancelation methods.展开更多
The receiving response of towed line array to the noise radiated from the tow ship is investigated through normal mode modeling and computer simulation. The phenomenon that the maximum output of the towed line array i...The receiving response of towed line array to the noise radiated from the tow ship is investigated through normal mode modeling and computer simulation. The phenomenon that the maximum output of the towed line array is away from the endfire direction towards the tow ship is explained. The result is important for the understanding of the phenomenon and also for the application research concerning the suppression of the noise from the tow ship as well as adequate application of towed array techniques in shallow water.展开更多
It is better to use a simple configuration to enhance the matched-field inversion method based on a horizontal line applicability of ocean environment inversion in shallow water. A array (HLA) is used to retrieve th...It is better to use a simple configuration to enhance the matched-field inversion method based on a horizontal line applicability of ocean environment inversion in shallow water. A array (HLA) is used to retrieve the variation of sound speed profile. The performance of the inversion method is verified in the South China Sea in June, 2010. An HLA laid at bottom was used to receive signals from a bottom-mounted transducer. Inverted mean sound speed profiles from 9-hour long acoustic signals are in good agreement with measurements from two temperature chains at the sites of the source and receiver. The results show that an HLA can be used to monitor the variability of shallow-water sound speed profile.展开更多
The spatial matrix filter was designed and used for solving the problem to detect a weak target who was influenced by the strong nearby platform noise interference of the towed line array sonar. The MFP technology and...The spatial matrix filter was designed and used for solving the problem to detect a weak target who was influenced by the strong nearby platform noise interference of the towed line array sonar. The MFP technology and the DOA estimation technology were combined together by using the sound propagation characteristics of both target and interference. The spatial matrix filter with platform noise zero response constraint was designed by the near-field platform noise normal modes copy vectors and the far-field plane wave bearing vectors together. The optimal solution of the optimization problem for designing the spatial matrix filter was deduced directly, and it was simplified by the generalized singular value decomposition. The total response error to the plane wave bearing vectors and the total response to the platform noise copy vectors were given. The phenomena that strong interferences existed in the bearing course and blind areas existed after filtering were analyzed by the correlation between the plat- form noise copy vectors and the plane wave bearing vectors. It could be found from simulations that it has less blind area and higher detection ability by using the spatial matrix filtering technology.展开更多
In order to solve the problem of the sensor location uncertainty for a towed line array, the sample matrix of the signal and time-space curve equations of the simulated array shape are presented in this paper. Average...In order to solve the problem of the sensor location uncertainty for a towed line array, the sample matrix of the signal and time-space curve equations of the simulated array shape are presented in this paper. Average beampatterns of randomized processing are given too . The quantitative results of array shape variation and distortion losses are obtained from the comparison between the computer simulation and the experimental results. In addition, a model for estimating array shape is offered. An experiment on dynamical beamforming is carried out. The results show that SNR improvement of about 4dB may be obtained by dynamic compensation for a small array when the distortion is medial and the tow speed is low.展开更多
The distortion of the array shape is one of the main factors which result the performance degeneration from the ideal situation of towed line array (TLA). Based on the ordinary array shape distortion, the directivity ...The distortion of the array shape is one of the main factors which result the performance degeneration from the ideal situation of towed line array (TLA). Based on the ordinary array shape distortion, the directivity function of TLA is presented in this paper. An algorithm for precisely determning the coordinates of each element by means of the inverse elliptic function is derived. A fast approximation of recursive formula for solving distorted array shape is given. According to the comparison between ideal directivity and the directivity of distorted array, the criterion for making decision of operational mode of TLA sonar is presented. So that the performance prediction problem in TLA is solved. The results of system simulation in computer show a good agreement with the theoretical analysis.展开更多
The theoretical analysis and experimental research on Port/Starboard (P/S) discrimination in towed line array are proposed. Two methods resolving the P/S ambiguity with hydrophone triplets are introduced. By processi...The theoretical analysis and experimental research on Port/Starboard (P/S) discrimination in towed line array are proposed. Two methods resolving the P/S ambiguity with hydrophone triplets are introduced. By processing experimental data, the theoretical analysis is verified. The processing algorithm is extended to broadband signal. The research results show that the method based on optimum beamforming with triplets can be used to remove the port/starboard ambiguity. Also because of the simplicity of the method, it is expected to be implemented in practical towed line array sonar.展开更多
We describe the structure and testing of one-dimensional array parallel-optics photo-detectors with 16 photodiodes of which each diode operates up to 8 Gb/s. The single element is vertical and top illuminated 30μm-di...We describe the structure and testing of one-dimensional array parallel-optics photo-detectors with 16 photodiodes of which each diode operates up to 8 Gb/s. The single element is vertical and top illuminated 30μm-diameter silicon on insulator (Ge-on-SOI) PIN photodetector. High-quality Ge absorption layer is epitaxially grown on SO1 substrate by the ultra-high vacuum chemical vapor deposition (UHV-CVD). The photodiode exhibits a good responsivity of 0.20 A/W at a wavelength of 1550 nm. The dark current is as low as 0.36/aA at a reverse bias of 1 V, and the corresponding current density is about 51 mA/cm2. The detector with a diameter of 30 t.trn is measured at an incident light of 1.55 μm and 0.5 mW, and the 3-dB bandwidth is 7.39 GHz without bias and 13.9 GHz at a reverse bias of 3 V. The 16 devices show a good consistency.展开更多
The performance of time-reversal focusing with a horizontal line array at different depths is investigated by normal mode modeling and computer simulation. It is observed that the focusing performance of a bottom-moun...The performance of time-reversal focusing with a horizontal line array at different depths is investigated by normal mode modeling and computer simulation. It is observed that the focusing performance of a bottom-mounted horizontal time-reversal array is much better than that of a horizontal time-reversal array at other depths in shallow water. The normal mode modeling is used to explain this result. The absolute values of the modes at different depths are compared. It is shown that the number of modes whose absolute values close to zero is smaller at the bottom than that at other depths. It means that the horizontal time-reversal array deployed at the bottom can sample more modes, obtain more information of the probe source and achieve better focusing performance. The numerical simulations of time-reversal focusing performance under various conditions, such as different sound speed profiles, and different bottom parameters, lead to similar results.展开更多
The small autonomous platform with a thin line array is an important tool for underwater acoustic mobile surveillance.Generally,only one-dimensional(1-D)direction-of-arrival(DOA)of the source signal can be estimated u...The small autonomous platform with a thin line array is an important tool for underwater acoustic mobile surveillance.Generally,only one-dimensional(1-D)direction-of-arrival(DOA)of the source signal can be estimated using a thin towed line array.In this work,the two-dimensional(2-D)DOA estimation is achieved by the thin line array towed by a small autonomous platform due to its flexible maneuver.Two perpendicular tow paths are formed through the fast turning of this array.An L-shaped array is formed by the same towed array on these two tow paths at different times.Using the array on these two straight paths,two 1-D DOAs of the source signal are obtained respectively,and then the 2-D DOA based on the formed L-shaped array can be estimated.The effectiveness of proposed approach is verified by numerical simulations and its theoretical error is analyzed.展开更多
In this paper, a new carbon fiber based cathode — a low-outgassing-rate carbon fiber array cathode — is investigated experimentally, and the experimental results are compared with those of a polymer velvet cathode. ...In this paper, a new carbon fiber based cathode — a low-outgassing-rate carbon fiber array cathode — is investigated experimentally, and the experimental results are compared with those of a polymer velvet cathode. The carbon fiber array cathode is constructed by inserting bunches of carbon fibers into the cylindrical surface of the cathode. In experiment, the diode base pressure is maintained at 1×10^(-2) Pa–2×10^(-2) Pa, and the diode is driven by a compact pulsed power system which can provide a diode voltage of about 100 kV and pulse duration of about 30 ns at a repetition rate of tens of Hz.Real-time pressure data are measured by a magnetron gauge. Under the similar conditions, the experimental results show that the outgassing rate of the carbon fiber array cathode is an order smaller than that of the velvet cathode and that this carbon fiber array cathode has better shot-to-shot stability than the velvet cathode. Hence, this carbon fiber array cathode is demonstrated to be a promising cathode for the radial diode, which can be used in magnetically insulated transmission line oscillator(MILO) and relativistic magnetron(RM).展开更多
An assumption that <em>all</em> the six flavour quarks are attributed to be the components of <em>a same, a</em> <em>common</em> isospin multiplets space named <strong>STS<...An assumption that <em>all</em> the six flavour quarks are attributed to be the components of <em>a same, a</em> <em>common</em> isospin multiplets space named <strong>STS</strong> is proposed. Base on <strong>Pauli Exclusion Principle</strong>, every quark is assigned to different flavour marks in STS. Every flavour quark possesses <em>its own colour spectral line array</em> specially appointed. The collection of colour spectral line arrays of the six flavour quarks constructs together the <strong>CSDF</strong>, Colour Spectrum Diagram of Flavour, further baryons and mesons could be constructed from <strong>CSDF</strong>. STS, Spin Topological Space is a math frame with infinite dimensional matrix representation for spin angular momentum. Flavours is an isospin angular momentum coupling phenomena of the three-colour-quarks.展开更多
The contact point configuration should be carefully chosen to ensure a stable capture,especially for the non-cooperative target capture mission using multi-armed spacecraft.In this work scenario,the contact points on ...The contact point configuration should be carefully chosen to ensure a stable capture,especially for the non-cooperative target capture mission using multi-armed spacecraft.In this work scenario,the contact points on the base and on the arms are distributed on the opposite side of the target.Otherwise,large forces will be needed.To cope with this problem,an uneven-oriented distribution union criterion is proposed.The union criterion contains a virtual symmetrical criterion and a geometry criterion.The virtual symmetrical contact point criterion is derived from the proof of the force closure principle using computational geometry to ensure a stable grasp,and the geometry criterion is calculated by the volume of the minimum polyhedron formed by the contact points to get a wide-range distribution.To further accelerate the optimization rate and enhance the global search ability,a line array modeling method and a continuous-discrete global search algorithm are proposed.The line array modeling method reduces the workload of calculating the descent direction and the gradient available,while the continuous-discrete global search algorithm reducing the optimization dimension.Then a highly efficient grasping is achieved and the corresponding contact point is calculated.Finally,an exhaustive verification is conducted to numerically analyze the disturbance resistance ability,and simulation results demonstrate the effectiveness of the proposed algorithms.展开更多
基金Project supported by the National Defense Basic Science Research Program,China(Grant No.JCKY2016607C009)the Youth Innovation Promotion Association of the Chinese Academy of Sciences(Grant No.2018025)。
文摘In the towed line array sonar system,the tow ship noise is the main factor that affects the sonar performance.Conventional noise cancelling methods assume that the noise is towards the endfire direction of the array.An acoustic experiment employing a towed line array is conducted in the western Pacific Ocean,and a strange bearing-splitting phenomenon of the tow ship noise is observed in the array.The tow ship noise is split into multiple noise signals whose bearings are distributed between 10°and 90°deviating from the endfire direction.The multiple interferences increase the difficulty in recognizing the target for the sonar operator and noise cancellation.Therefore,making the mechanism clear and putting forward the tow ship noise splitting bearing estimation method are imperative.In this paper,the acoustic multi-path structure of the tow ship in deep water is analyzed.Then it is pointed out that the bearing-splitting phenomenon is caused by the main lobe of direct rays and bottom-reflected rays,as well as several side lobes of direct rays.Meanwhile,the indistinguishability between the elevation angle and the bearing angle due to the axial symmetry of a strict horizontal line array causes the bearing to deviate from the endfire direction.Based on the theory above,a method of estimating bearing of the tow ship noise in deep water is proposed.The theoretical analysis results accord with the experimental results,which helps to identify the target and provide correct initial bearing guidance for noise cancelation methods.
文摘The receiving response of towed line array to the noise radiated from the tow ship is investigated through normal mode modeling and computer simulation. The phenomenon that the maximum output of the towed line array is away from the endfire direction towards the tow ship is explained. The result is important for the understanding of the phenomenon and also for the application research concerning the suppression of the noise from the tow ship as well as adequate application of towed array techniques in shallow water.
基金supported by the National Natural Science Foundation of China(Grant Nos.11434012,11404366,11125420 and 11074269)
文摘It is better to use a simple configuration to enhance the matched-field inversion method based on a horizontal line applicability of ocean environment inversion in shallow water. A array (HLA) is used to retrieve the variation of sound speed profile. The performance of the inversion method is verified in the South China Sea in June, 2010. An HLA laid at bottom was used to receive signals from a bottom-mounted transducer. Inverted mean sound speed profiles from 9-hour long acoustic signals are in good agreement with measurements from two temperature chains at the sites of the source and receiver. The results show that an HLA can be used to monitor the variability of shallow-water sound speed profile.
基金supported by the National Natural Science Foundation of China(60532040,11374001)
文摘The spatial matrix filter was designed and used for solving the problem to detect a weak target who was influenced by the strong nearby platform noise interference of the towed line array sonar. The MFP technology and the DOA estimation technology were combined together by using the sound propagation characteristics of both target and interference. The spatial matrix filter with platform noise zero response constraint was designed by the near-field platform noise normal modes copy vectors and the far-field plane wave bearing vectors together. The optimal solution of the optimization problem for designing the spatial matrix filter was deduced directly, and it was simplified by the generalized singular value decomposition. The total response error to the plane wave bearing vectors and the total response to the platform noise copy vectors were given. The phenomena that strong interferences existed in the bearing course and blind areas existed after filtering were analyzed by the correlation between the plat- form noise copy vectors and the plane wave bearing vectors. It could be found from simulations that it has less blind area and higher detection ability by using the spatial matrix filtering technology.
文摘In order to solve the problem of the sensor location uncertainty for a towed line array, the sample matrix of the signal and time-space curve equations of the simulated array shape are presented in this paper. Average beampatterns of randomized processing are given too . The quantitative results of array shape variation and distortion losses are obtained from the comparison between the computer simulation and the experimental results. In addition, a model for estimating array shape is offered. An experiment on dynamical beamforming is carried out. The results show that SNR improvement of about 4dB may be obtained by dynamic compensation for a small array when the distortion is medial and the tow speed is low.
文摘The distortion of the array shape is one of the main factors which result the performance degeneration from the ideal situation of towed line array (TLA). Based on the ordinary array shape distortion, the directivity function of TLA is presented in this paper. An algorithm for precisely determning the coordinates of each element by means of the inverse elliptic function is derived. A fast approximation of recursive formula for solving distorted array shape is given. According to the comparison between ideal directivity and the directivity of distorted array, the criterion for making decision of operational mode of TLA sonar is presented. So that the performance prediction problem in TLA is solved. The results of system simulation in computer show a good agreement with the theoretical analysis.
文摘The theoretical analysis and experimental research on Port/Starboard (P/S) discrimination in towed line array are proposed. Two methods resolving the P/S ambiguity with hydrophone triplets are introduced. By processing experimental data, the theoretical analysis is verified. The processing algorithm is extended to broadband signal. The research results show that the method based on optimum beamforming with triplets can be used to remove the port/starboard ambiguity. Also because of the simplicity of the method, it is expected to be implemented in practical towed line array sonar.
文摘We describe the structure and testing of one-dimensional array parallel-optics photo-detectors with 16 photodiodes of which each diode operates up to 8 Gb/s. The single element is vertical and top illuminated 30μm-diameter silicon on insulator (Ge-on-SOI) PIN photodetector. High-quality Ge absorption layer is epitaxially grown on SO1 substrate by the ultra-high vacuum chemical vapor deposition (UHV-CVD). The photodiode exhibits a good responsivity of 0.20 A/W at a wavelength of 1550 nm. The dark current is as low as 0.36/aA at a reverse bias of 1 V, and the corresponding current density is about 51 mA/cm2. The detector with a diameter of 30 t.trn is measured at an incident light of 1.55 μm and 0.5 mW, and the 3-dB bandwidth is 7.39 GHz without bias and 13.9 GHz at a reverse bias of 3 V. The 16 devices show a good consistency.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10774119)the Program for New Century Excellent Talents in University (Grant No. NCET-08-0455)+2 种基金the Natural Science Foundation of Shaanxi Province of China(Grant No. SJ08F07)the Foundation of National Laboratory of Acousticsthe Northwestern Polytechnical University (NPU) Foundation for Fundamental Research
文摘The performance of time-reversal focusing with a horizontal line array at different depths is investigated by normal mode modeling and computer simulation. It is observed that the focusing performance of a bottom-mounted horizontal time-reversal array is much better than that of a horizontal time-reversal array at other depths in shallow water. The normal mode modeling is used to explain this result. The absolute values of the modes at different depths are compared. It is shown that the number of modes whose absolute values close to zero is smaller at the bottom than that at other depths. It means that the horizontal time-reversal array deployed at the bottom can sample more modes, obtain more information of the probe source and achieve better focusing performance. The numerical simulations of time-reversal focusing performance under various conditions, such as different sound speed profiles, and different bottom parameters, lead to similar results.
基金National Key Research and Development Plan Project(No.2020YFB2010800)National Natural Science Foundation of China(Nos.61971307,61905175,51775377)。
文摘The small autonomous platform with a thin line array is an important tool for underwater acoustic mobile surveillance.Generally,only one-dimensional(1-D)direction-of-arrival(DOA)of the source signal can be estimated using a thin towed line array.In this work,the two-dimensional(2-D)DOA estimation is achieved by the thin line array towed by a small autonomous platform due to its flexible maneuver.Two perpendicular tow paths are formed through the fast turning of this array.An L-shaped array is formed by the same towed array on these two tow paths at different times.Using the array on these two straight paths,two 1-D DOAs of the source signal are obtained respectively,and then the 2-D DOA based on the formed L-shaped array can be estimated.The effectiveness of proposed approach is verified by numerical simulations and its theoretical error is analyzed.
基金Project supported by the National Natural Science Foundation of China(Grant No.61671457)
文摘In this paper, a new carbon fiber based cathode — a low-outgassing-rate carbon fiber array cathode — is investigated experimentally, and the experimental results are compared with those of a polymer velvet cathode. The carbon fiber array cathode is constructed by inserting bunches of carbon fibers into the cylindrical surface of the cathode. In experiment, the diode base pressure is maintained at 1×10^(-2) Pa–2×10^(-2) Pa, and the diode is driven by a compact pulsed power system which can provide a diode voltage of about 100 kV and pulse duration of about 30 ns at a repetition rate of tens of Hz.Real-time pressure data are measured by a magnetron gauge. Under the similar conditions, the experimental results show that the outgassing rate of the carbon fiber array cathode is an order smaller than that of the velvet cathode and that this carbon fiber array cathode has better shot-to-shot stability than the velvet cathode. Hence, this carbon fiber array cathode is demonstrated to be a promising cathode for the radial diode, which can be used in magnetically insulated transmission line oscillator(MILO) and relativistic magnetron(RM).
文摘An assumption that <em>all</em> the six flavour quarks are attributed to be the components of <em>a same, a</em> <em>common</em> isospin multiplets space named <strong>STS</strong> is proposed. Base on <strong>Pauli Exclusion Principle</strong>, every quark is assigned to different flavour marks in STS. Every flavour quark possesses <em>its own colour spectral line array</em> specially appointed. The collection of colour spectral line arrays of the six flavour quarks constructs together the <strong>CSDF</strong>, Colour Spectrum Diagram of Flavour, further baryons and mesons could be constructed from <strong>CSDF</strong>. STS, Spin Topological Space is a math frame with infinite dimensional matrix representation for spin angular momentum. Flavours is an isospin angular momentum coupling phenomena of the three-colour-quarks.
基金supported by the National Natural Science Foundation of China(Nos.62003115,11972130)Shenzhen Natural Science Fund(the Stable Support Plan Program GXWD20201230155427003-20200821170719001).
文摘The contact point configuration should be carefully chosen to ensure a stable capture,especially for the non-cooperative target capture mission using multi-armed spacecraft.In this work scenario,the contact points on the base and on the arms are distributed on the opposite side of the target.Otherwise,large forces will be needed.To cope with this problem,an uneven-oriented distribution union criterion is proposed.The union criterion contains a virtual symmetrical criterion and a geometry criterion.The virtual symmetrical contact point criterion is derived from the proof of the force closure principle using computational geometry to ensure a stable grasp,and the geometry criterion is calculated by the volume of the minimum polyhedron formed by the contact points to get a wide-range distribution.To further accelerate the optimization rate and enhance the global search ability,a line array modeling method and a continuous-discrete global search algorithm are proposed.The line array modeling method reduces the workload of calculating the descent direction and the gradient available,while the continuous-discrete global search algorithm reducing the optimization dimension.Then a highly efficient grasping is achieved and the corresponding contact point is calculated.Finally,an exhaustive verification is conducted to numerically analyze the disturbance resistance ability,and simulation results demonstrate the effectiveness of the proposed algorithms.