This paper focuses on the process for pillow shape plate by line heating technique, which is widely applied in the production of ship hull. Based on the analysis of primary parameters and experimental data in line hea...This paper focuses on the process for pillow shape plate by line heating technique, which is widely applied in the production of ship hull. Based on the analysis of primary parameters and experimental data in line heating process, the amount of local contraction generated by line heating has been illustrated. Then, combining with the computational result of local deformation determined by shell plate development, an optimization method for line heating parameters has been studied. This prediction system may provide rational arrangements of heating lines and technical parameters of process. By integrating the prediction system into the line heating robot for pillow shape plate, the automatic process of line heating for pillow shape plate can be achieved.展开更多
The purpose of this paper is to investigate the feasibility of high-frequency induction heat for the line heating process through a series of experimental studies and numerical calculations. The results show that the ...The purpose of this paper is to investigate the feasibility of high-frequency induction heat for the line heating process through a series of experimental studies and numerical calculations. The results show that the heating temperature of induction heating meets the demands of steel plate bending, and the deformation of a steel plate heated by induction heating can achieve the same effect as flame heating. Meanwhile, the finite element model of moving induction heating of the plate is developed, and the comparison of the residual strain fields and transverse shrinkage between these two kinds of heating shows that great similarity has been achieved.展开更多
Based on experimental data of line heating, the methods of vector mapping, plane projection, and coordinate converting are presented to establish the spectra for line heating distortion discipline which shows the rela...Based on experimental data of line heating, the methods of vector mapping, plane projection, and coordinate converting are presented to establish the spectra for line heating distortion discipline which shows the relationship between process parameters and distortion parameters of line heating. Back-propagation network (BP-net) is used to modify tile spectra. Mathematical models for optimizing line heating techniques parameters, which include two-objective functions, are constructed. To convert the multi-objective optimization into a single-objective one, the method of changifig weight coefficient is used, and then the individual fitness function is built up, Taking the number of heating lines, distance between the heating lines' border (line space), and shrink quantity of lines as three restrictive conditions, a hierarchy genetic algorithm (HGA) code is established by making use of information provided by the spectra, in which inner coding and outer coding adopt different heredity arithmetic operators in inherent operating, The numerical example shows that the spectra for line heating distortion discipline presented here can provide accurate information required by techniques parameter prediction of line heating process and the technique parameter optimization method based on HGA provided here can obtain good results for hull plate.展开更多
Line heating method is widely used to manufacture curved surfaces in ship building. The main factors governing the quality of the manufactured products are the moving velocity of the heating source, heating strength, ...Line heating method is widely used to manufacture curved surfaces in ship building. The main factors governing the quality of the manufactured products are the moving velocity of the heating source, heating strength, and heating ways. In this study, the temperature distributions of the heated plate were investigated with the condition that the line heating process was automatic. The temperature variations were also investigated with the changes of those three variables. The numerical results showed that the peak temperature decreased as the moving velocity of the heating source increased. It also revealed that the peak temperatures changed linearly with the changes of the heating source.展开更多
The present investigation centers on the impact of viscous dissipation and ohmic heating on the plume generated by a line heat source under the impact of an aligned magnetic field.In this study,the flow model is adapt...The present investigation centers on the impact of viscous dissipation and ohmic heating on the plume generated by a line heat source under the impact of an aligned magnetic field.In this study,the flow model is adapted to incorporate ohmic heating and viscous dissipation by including the respective terms in the energy equation.A mathematical model is formulated as a system of coupled partial differential equations to analyze the flow problem.Subsequently,a numerical solution is derived with stream function formulation for the system of coupled partial differential equations,which transmutes it into ordinary differential equations.To achieve this,the numerical properties of the problem are established through the utilization of the Shooting method in tandem with the MATLAB tool bvp4c.The graphical representations of both missing and specified boundary conditions depict the effects of the magnetic parameter,viscous dissipation variable,magnetic force parameter,Prandtl number,and magnetic Prandtl number.These are accompanied by a discussion of their respective physical implications.The observed results claimed that the velocity,current density,and temperature distribution decrease for enhancing magnetic parameters.Meanwhile,the skin friction and magnetic flux drop while the heat transfer rate increases with an increment in magnetic parameters.These fluid flow and heat transfer characteristics were observed to decrease for increasing viscous dissipation.The current work is novel in incorporating ohmic heating viscous dissipation in energy equations coupled with Max-well and magnetic induction equations.展开更多
文摘This paper focuses on the process for pillow shape plate by line heating technique, which is widely applied in the production of ship hull. Based on the analysis of primary parameters and experimental data in line heating process, the amount of local contraction generated by line heating has been illustrated. Then, combining with the computational result of local deformation determined by shell plate development, an optimization method for line heating parameters has been studied. This prediction system may provide rational arrangements of heating lines and technical parameters of process. By integrating the prediction system into the line heating robot for pillow shape plate, the automatic process of line heating for pillow shape plate can be achieved.
基金Supported by the National Natural Science Foundation of China (50805016)
文摘The purpose of this paper is to investigate the feasibility of high-frequency induction heat for the line heating process through a series of experimental studies and numerical calculations. The results show that the heating temperature of induction heating meets the demands of steel plate bending, and the deformation of a steel plate heated by induction heating can achieve the same effect as flame heating. Meanwhile, the finite element model of moving induction heating of the plate is developed, and the comparison of the residual strain fields and transverse shrinkage between these two kinds of heating shows that great similarity has been achieved.
文摘Based on experimental data of line heating, the methods of vector mapping, plane projection, and coordinate converting are presented to establish the spectra for line heating distortion discipline which shows the relationship between process parameters and distortion parameters of line heating. Back-propagation network (BP-net) is used to modify tile spectra. Mathematical models for optimizing line heating techniques parameters, which include two-objective functions, are constructed. To convert the multi-objective optimization into a single-objective one, the method of changifig weight coefficient is used, and then the individual fitness function is built up, Taking the number of heating lines, distance between the heating lines' border (line space), and shrink quantity of lines as three restrictive conditions, a hierarchy genetic algorithm (HGA) code is established by making use of information provided by the spectra, in which inner coding and outer coding adopt different heredity arithmetic operators in inherent operating, The numerical example shows that the spectra for line heating distortion discipline presented here can provide accurate information required by techniques parameter prediction of line heating process and the technique parameter optimization method based on HGA provided here can obtain good results for hull plate.
基金supported by the post BK21 project of the MEST of Koreapartly supported by the NRL program of NRF of Korea (2008-0060153)
文摘Line heating method is widely used to manufacture curved surfaces in ship building. The main factors governing the quality of the manufactured products are the moving velocity of the heating source, heating strength, and heating ways. In this study, the temperature distributions of the heated plate were investigated with the condition that the line heating process was automatic. The temperature variations were also investigated with the changes of those three variables. The numerical results showed that the peak temperature decreased as the moving velocity of the heating source increased. It also revealed that the peak temperatures changed linearly with the changes of the heating source.
基金supported by the National Foreign Expert Project-Foreign Youth Talent Program Fund No.QN2023001001Beijing Natural Science Foundation Project-Foreign Scholar Program Fund No.IS23046/ZW001A00202301+1 种基金National Natural Science Foundation of China(NSFC)Fund No.12202019Beijing PostdoctoralResearch Activities Fund No.Q6001A00202301.
文摘The present investigation centers on the impact of viscous dissipation and ohmic heating on the plume generated by a line heat source under the impact of an aligned magnetic field.In this study,the flow model is adapted to incorporate ohmic heating and viscous dissipation by including the respective terms in the energy equation.A mathematical model is formulated as a system of coupled partial differential equations to analyze the flow problem.Subsequently,a numerical solution is derived with stream function formulation for the system of coupled partial differential equations,which transmutes it into ordinary differential equations.To achieve this,the numerical properties of the problem are established through the utilization of the Shooting method in tandem with the MATLAB tool bvp4c.The graphical representations of both missing and specified boundary conditions depict the effects of the magnetic parameter,viscous dissipation variable,magnetic force parameter,Prandtl number,and magnetic Prandtl number.These are accompanied by a discussion of their respective physical implications.The observed results claimed that the velocity,current density,and temperature distribution decrease for enhancing magnetic parameters.Meanwhile,the skin friction and magnetic flux drop while the heat transfer rate increases with an increment in magnetic parameters.These fluid flow and heat transfer characteristics were observed to decrease for increasing viscous dissipation.The current work is novel in incorporating ohmic heating viscous dissipation in energy equations coupled with Max-well and magnetic induction equations.