Thefilter-x least mean square(FxLMS)algorithm is widely used in active noise control(ANC)systems.However,because the algorithm is a feedback control algorithm based on the minimization of the error signal variance to ...Thefilter-x least mean square(FxLMS)algorithm is widely used in active noise control(ANC)systems.However,because the algorithm is a feedback control algorithm based on the minimization of the error signal variance to update thefilter coefficients,it has a certain delay,usually has a slow convergence speed,and the system response time is long and easily affected by the learning rate leading to the lack of system stability,which often fails to achieve the desired control effect in practice.In this paper,we propose an active control algorithm with near-est-neighbor trap structure and neural network feedback mechanism to reduce the coefficient update time of the FxLMS algorithm and use the neural network feedback mechanism to realize the parameter update,which is called NNR-BPFxLMS algorithm.In the paper,the schematic diagram of the feedback control is given,and the performance of the algorithm is analyzed.Under various noise conditions,it is shown by simulation and experiment that the NNR-BPFxLMS algorithm has the following three advantages:in terms of performance,it has higher noise reduction under the same number of sampling points,i.e.,it has faster convergence speed,and by computer simulation and sound pipe experiment,for simple ideal line spectrum noise,compared with the convergence speed of NNR-BPFxLMS is improved by more than 95%compared with FxLMS algorithm,and the convergence speed of real noise is also improved by more than 70%.In terms of stability,NNR-BPFxLMS is insensitive to step size changes.In terms of tracking performance,its algorithm responds quickly to sudden changes in the noise spectrum and can cope with the complex control requirements of sudden changes in the noise spectrum.展开更多
The receiving response of towed line array to the noise radiated from the tow ship is investigated through normal mode modeling and computer simulation. The phenomenon that the maximum output of the towed line array i...The receiving response of towed line array to the noise radiated from the tow ship is investigated through normal mode modeling and computer simulation. The phenomenon that the maximum output of the towed line array is away from the endfire direction towards the tow ship is explained. The result is important for the understanding of the phenomenon and also for the application research concerning the suppression of the noise from the tow ship as well as adequate application of towed array techniques in shallow water.展开更多
The spatial matrix filter was designed and used for solving the problem to detect a weak target who was influenced by the strong nearby platform noise interference of the towed line array sonar. The MFP technology and...The spatial matrix filter was designed and used for solving the problem to detect a weak target who was influenced by the strong nearby platform noise interference of the towed line array sonar. The MFP technology and the DOA estimation technology were combined together by using the sound propagation characteristics of both target and interference. The spatial matrix filter with platform noise zero response constraint was designed by the near-field platform noise normal modes copy vectors and the far-field plane wave bearing vectors together. The optimal solution of the optimization problem for designing the spatial matrix filter was deduced directly, and it was simplified by the generalized singular value decomposition. The total response error to the plane wave bearing vectors and the total response to the platform noise copy vectors were given. The phenomena that strong interferences existed in the bearing course and blind areas existed after filtering were analyzed by the correlation between the plat- form noise copy vectors and the plane wave bearing vectors. It could be found from simulations that it has less blind area and higher detection ability by using the spatial matrix filtering technology.展开更多
基金This work was supported by the National Key R&D Program of China(Grant No.2020YFA040070).
文摘Thefilter-x least mean square(FxLMS)algorithm is widely used in active noise control(ANC)systems.However,because the algorithm is a feedback control algorithm based on the minimization of the error signal variance to update thefilter coefficients,it has a certain delay,usually has a slow convergence speed,and the system response time is long and easily affected by the learning rate leading to the lack of system stability,which often fails to achieve the desired control effect in practice.In this paper,we propose an active control algorithm with near-est-neighbor trap structure and neural network feedback mechanism to reduce the coefficient update time of the FxLMS algorithm and use the neural network feedback mechanism to realize the parameter update,which is called NNR-BPFxLMS algorithm.In the paper,the schematic diagram of the feedback control is given,and the performance of the algorithm is analyzed.Under various noise conditions,it is shown by simulation and experiment that the NNR-BPFxLMS algorithm has the following three advantages:in terms of performance,it has higher noise reduction under the same number of sampling points,i.e.,it has faster convergence speed,and by computer simulation and sound pipe experiment,for simple ideal line spectrum noise,compared with the convergence speed of NNR-BPFxLMS is improved by more than 95%compared with FxLMS algorithm,and the convergence speed of real noise is also improved by more than 70%.In terms of stability,NNR-BPFxLMS is insensitive to step size changes.In terms of tracking performance,its algorithm responds quickly to sudden changes in the noise spectrum and can cope with the complex control requirements of sudden changes in the noise spectrum.
文摘The receiving response of towed line array to the noise radiated from the tow ship is investigated through normal mode modeling and computer simulation. The phenomenon that the maximum output of the towed line array is away from the endfire direction towards the tow ship is explained. The result is important for the understanding of the phenomenon and also for the application research concerning the suppression of the noise from the tow ship as well as adequate application of towed array techniques in shallow water.
基金supported by the National Natural Science Foundation of China(60532040,11374001)
文摘The spatial matrix filter was designed and used for solving the problem to detect a weak target who was influenced by the strong nearby platform noise interference of the towed line array sonar. The MFP technology and the DOA estimation technology were combined together by using the sound propagation characteristics of both target and interference. The spatial matrix filter with platform noise zero response constraint was designed by the near-field platform noise normal modes copy vectors and the far-field plane wave bearing vectors together. The optimal solution of the optimization problem for designing the spatial matrix filter was deduced directly, and it was simplified by the generalized singular value decomposition. The total response error to the plane wave bearing vectors and the total response to the platform noise copy vectors were given. The phenomena that strong interferences existed in the bearing course and blind areas existed after filtering were analyzed by the correlation between the plat- form noise copy vectors and the plane wave bearing vectors. It could be found from simulations that it has less blind area and higher detection ability by using the spatial matrix filtering technology.