期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Chain Rule for Extracting Resilience Procurement Costs from Locational Marginal Prices
1
作者 Yifei Wang Tong Zhu +2 位作者 Tiancong Chen Mohammad Shahidehpour Qingshan Xu 《CSEE Journal of Power and Energy Systems》 SCIE EI CSCD 2024年第3期1342-1355,共14页
Power system resilience procurement costs in N-k contingencies have gained more prominence as number of extreme events continues to increase.A chain rule is presented in this paper for extracting resilience procuremen... Power system resilience procurement costs in N-k contingencies have gained more prominence as number of extreme events continues to increase.A chain rule is presented in this paper for extracting resilience procurement costs from a fully decomposed locational marginal price(LMP)model.First,power transfer distribution factor(PTDF)matrices with AC power flow(i.e.,AC-PTDF)are determined.AC-PTDF and AC-LODF(line outage distribution factor)equations are derived for N-k contingencies and a fully decomposed LMP model is developed where generation and transmission security components are established for specific contingencies.Furthermore,resilience procurement costs can be measured at different buses for the proposed security components.Impact of N-k contingencies on resilience procurement costs at specific buses can be determined as proposed security components will gain more insight for resilience procurement in power systems.The modified IEEE 6-bus and 118-bus systems are adopted to verify effectiveness of the proposed resilience procurement method. 展开更多
关键词 line outage distribution factors locational marginal price power system resilience power transfer distribution factor security components
原文传递
Robust N−k Security-constrained Optimal Power Flow Incorporating Preventive and Corrective Generation Dispatch to Improve Power System Reliability
2
作者 Liping Huang Chun Sing Lai +3 位作者 Zhuoli Zhao Guangya Yang Bang Zhong Loi Lei Lai 《CSEE Journal of Power and Energy Systems》 SCIE EI CSCD 2023年第1期351-364,共14页
As extreme weather events have become more frequent in recent years,improving the resilience and reliability of power systems has become an important area of concern.In this paper,a robust preventive-corrective securi... As extreme weather events have become more frequent in recent years,improving the resilience and reliability of power systems has become an important area of concern.In this paper,a robust preventive-corrective security-constrained optimal power flow(RO-PCSCOPF)model is proposed to improve power system reliability under N−k outages.Both the short-term emergency limit(STL)and the long-term operating limit(LTL)of the post-contingency power flow on the branch are considered.Compared with the existing robust corrective SCOPF model that only considers STL or LTL,the proposed ROPCSCOPF model can achieve a more reliable generation dispatch solution.In addition,this paper also summarizes and compares the solution methods for solving the N−k SCOPF problem.The computational efficiency of the classical Benders decomposition(BD)method,robust optimization(RO)method,and line outage distribution factor(LODF)method are investigated on the IEEE 24-bus Reliability Test System and 118-bus system.Simulation results show that the BD method has the worst computation performance.The RO method and the LODF method have comparable performance.However,the LODF method can only be used for the preventive SCOPF and not for the corrective SCOPF.The RO method can be used for both. 展开更多
关键词 Benders cut bender decomposition line outage distribution factor N−k security criterion optimal power flow power system reliability RESILIENCE robust optimization
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部