This paper analyzes the operation parameters of the time delay and integration (TDI) line scan CCD camera, such as resolution, line rate, clock frequency, etc. and their mathematical relationship is deduced. By analyz...This paper analyzes the operation parameters of the time delay and integration (TDI) line scan CCD camera, such as resolution, line rate, clock frequency, etc. and their mathematical relationship is deduced. By analyzing and calculating these parameters, the working clocks of the TDI CCD line scan camera are designed, which guarantees the synchronization of the line scan rate and the camera movement speed. The IL-E2 TDI CCD of DALSA Co. is used as the sensor of the camera in the paper. The working clock generator used for the TDI CCD sensor is realized by using the programmable logic device (PLD). The experimental results show that the working clock generator circuit satisfies the requirement of high speed TDI CCD line scan camera.展开更多
A system with uniform light reflection in the inner surface within a horizontal 2/3 cylindrical structure for line-scan CCD of the print testing was designed. The design was based on diffuse reflection uniformity of t...A system with uniform light reflection in the inner surface within a horizontal 2/3 cylindrical structure for line-scan CCD of the print testing was designed. The design was based on diffuse reflection uniformity of the integrating sphere and requirement of the strip uniform illumination region. This system was called dome light. White light LED array light sources were used for uniform illumi- nation. The LEDs were filtrated to composite array light source based on coefficient of variation of a single LED. The standard white board and SG color checkers were used in the line-scan CCD imaging experiments under the dome light and ordinary illumination light source. The average color difference (AE) of SG color checkers in CIELAB space was 2. 091 under the dome light and 2. 286 under ordinary illumination light source respectively. Experimental results indicate that the dome light can satisfy illumination uniformity and color rendering consistency for line-scan CCD and provide a standard light source for uniform calibration of different cameras.展开更多
An on-line full scan inspection system is developed for particle size analysis. A particle image is first obtained through optical line scan technology and is then analyzed using digital image processing. The system i...An on-line full scan inspection system is developed for particle size analysis. A particle image is first obtained through optical line scan technology and is then analyzed using digital image processing. The system is composed of a particle separation module, an image acquisition module, an image processing module, and an electric control module. Experiments are carried out using non-uniform 0.1 mm particles. The main advantage of this system consists of a full analysis of particles without any overlap or miss, thus improving the Area Scan Charge Coupled Device (CCD) acquisition problems. Particle size distribution, roundness, and sphericity can be obtained using the system with a deviation of repeated precision of around ±1%. The developed system is shown to be also convenient and versatile for any particle size and shape for academic and industrial users.展开更多
基金Sponsored by the Research Fund of Harbin Institute of Technology (Grant No.HITMD 2001.18).
文摘This paper analyzes the operation parameters of the time delay and integration (TDI) line scan CCD camera, such as resolution, line rate, clock frequency, etc. and their mathematical relationship is deduced. By analyzing and calculating these parameters, the working clocks of the TDI CCD line scan camera are designed, which guarantees the synchronization of the line scan rate and the camera movement speed. The IL-E2 TDI CCD of DALSA Co. is used as the sensor of the camera in the paper. The working clock generator used for the TDI CCD sensor is realized by using the programmable logic device (PLD). The experimental results show that the working clock generator circuit satisfies the requirement of high speed TDI CCD line scan camera.
基金Supported by the National Natural Science Foundation of China(61078048)
文摘A system with uniform light reflection in the inner surface within a horizontal 2/3 cylindrical structure for line-scan CCD of the print testing was designed. The design was based on diffuse reflection uniformity of the integrating sphere and requirement of the strip uniform illumination region. This system was called dome light. White light LED array light sources were used for uniform illumi- nation. The LEDs were filtrated to composite array light source based on coefficient of variation of a single LED. The standard white board and SG color checkers were used in the line-scan CCD imaging experiments under the dome light and ordinary illumination light source. The average color difference (AE) of SG color checkers in CIELAB space was 2. 091 under the dome light and 2. 286 under ordinary illumination light source respectively. Experimental results indicate that the dome light can satisfy illumination uniformity and color rendering consistency for line-scan CCD and provide a standard light source for uniform calibration of different cameras.
文摘An on-line full scan inspection system is developed for particle size analysis. A particle image is first obtained through optical line scan technology and is then analyzed using digital image processing. The system is composed of a particle separation module, an image acquisition module, an image processing module, and an electric control module. Experiments are carried out using non-uniform 0.1 mm particles. The main advantage of this system consists of a full analysis of particles without any overlap or miss, thus improving the Area Scan Charge Coupled Device (CCD) acquisition problems. Particle size distribution, roundness, and sphericity can be obtained using the system with a deviation of repeated precision of around ±1%. The developed system is shown to be also convenient and versatile for any particle size and shape for academic and industrial users.