Shielding angle is one of the main factors influencing lightning performance of transmission lines,which always stays in the focus of the design and the evaluation of lightning protection.A formula for the improved sh...Shielding angle is one of the main factors influencing lightning performance of transmission lines,which always stays in the focus of the design and the evaluation of lightning protection.A formula for the improved shielding angle is proposed for evaluating the lightning performance in different terrains.The digital elevation model(DEM) is used to obtain the micro-topography data,such as the slope gradient,slope aspect,etc.The following results are obtained by analyzing the influence of topography factors on the improved shielding angle:(1) improved shielding angle non-linearly increases with the increase of the slope gradient and the slope aspect,(2) improved shielding angle is more sensitive to the slope gradient than to the slope aspect,(3) the improved shielding angle in the mountain terrains is much greater than the designed shielding angle.This may be the reason why the designed shielding angle is limited into the rational range,while the shielding faults occur frequently.展开更多
The operation data obtained abroad indicates that shielding failure in UHV transmission lines mostly accounts for the tripping-out accidents introduced by lightning striking the transmission line.Based on the discharg...The operation data obtained abroad indicates that shielding failure in UHV transmission lines mostly accounts for the tripping-out accidents introduced by lightning striking the transmission line.Based on the discharge theories of long air gap and randomness theory,a leader progression model of lightning shielding failure is presented in this paper.The random characteristics of the downward and upward leader are simulated in this model.The ground slope angel is also considered in this model by using coordinate transformation.Moreover,the system voltage is also taken into consideration in this model.The simulation results show that the good agreement between this model and the field data.And the results suggest that return striking exist obviously in UHV transmission line.展开更多
基金Project supported by National Natural Science Foundation of China (51277064).
文摘Shielding angle is one of the main factors influencing lightning performance of transmission lines,which always stays in the focus of the design and the evaluation of lightning protection.A formula for the improved shielding angle is proposed for evaluating the lightning performance in different terrains.The digital elevation model(DEM) is used to obtain the micro-topography data,such as the slope gradient,slope aspect,etc.The following results are obtained by analyzing the influence of topography factors on the improved shielding angle:(1) improved shielding angle non-linearly increases with the increase of the slope gradient and the slope aspect,(2) improved shielding angle is more sensitive to the slope gradient than to the slope aspect,(3) the improved shielding angle in the mountain terrains is much greater than the designed shielding angle.This may be the reason why the designed shielding angle is limited into the rational range,while the shielding faults occur frequently.
基金Project Supported by National Natural Science Foundation of China (50707036), Key Project of the National Eleventh-five Year Research Program of China (2006BAA02A18).
文摘The operation data obtained abroad indicates that shielding failure in UHV transmission lines mostly accounts for the tripping-out accidents introduced by lightning striking the transmission line.Based on the discharge theories of long air gap and randomness theory,a leader progression model of lightning shielding failure is presented in this paper.The random characteristics of the downward and upward leader are simulated in this model.The ground slope angel is also considered in this model by using coordinate transformation.Moreover,the system voltage is also taken into consideration in this model.The simulation results show that the good agreement between this model and the field data.And the results suggest that return striking exist obviously in UHV transmission line.