Most power transfer studies involve contingencies and multi pattern scenarios that often can only be performed in reasonable time with the use of linear methods. In these works, the effect of reactive power flows in l...Most power transfer studies involve contingencies and multi pattern scenarios that often can only be performed in reasonable time with the use of linear methods. In these works, the effect of reactive power flows in line loading is neglected while formulating the problem for ATC (available transfer capability) calculations. This paper presents the determination of shunt reactive power compensation in the presence of FACTS (flexible AC transmission system) devices like: SSSC (static synchronous series compensator) and UPFC (unified power flow controller) for enhancement of power transfer capability of a power system incorporating the reactive power flows in ATC calculations. In doing so, redistribution of power flow takes place and therefore improves ATC of the system. Studies on a sample 5-bus power system model are carried out to illustrate the effect of shunt compensation along with line flow control.展开更多
针对含大规模风电场的电力系统的可用输电能力(available transfer capability,ATC)进行研究,首先基于连续潮流法,提出了线性预测关键约束的改进算法,并引入到交流潮流模型中形成扩展潮流方程求解电力系统确定性ATC,且推导了电力系统AT...针对含大规模风电场的电力系统的可用输电能力(available transfer capability,ATC)进行研究,首先基于连续潮流法,提出了线性预测关键约束的改进算法,并引入到交流潮流模型中形成扩展潮流方程求解电力系统确定性ATC,且推导了电力系统ATC对风电等节点的注入功率波动的灵敏度快速估算模型。在此基础上,结合风电并网系统的多维可视化注入功率空间,提出了一种采用分层类聚算法划分蒙特卡罗抽样样本,综合考虑发电机随机故障、线路随机故障、风电场风速、发电机出力和负荷波动等多种不确定因素的概率ATC快速计算方法,最后通过算例分析验证了该算法的快速有效性。展开更多
文摘Most power transfer studies involve contingencies and multi pattern scenarios that often can only be performed in reasonable time with the use of linear methods. In these works, the effect of reactive power flows in line loading is neglected while formulating the problem for ATC (available transfer capability) calculations. This paper presents the determination of shunt reactive power compensation in the presence of FACTS (flexible AC transmission system) devices like: SSSC (static synchronous series compensator) and UPFC (unified power flow controller) for enhancement of power transfer capability of a power system incorporating the reactive power flows in ATC calculations. In doing so, redistribution of power flow takes place and therefore improves ATC of the system. Studies on a sample 5-bus power system model are carried out to illustrate the effect of shunt compensation along with line flow control.
文摘针对含大规模风电场的电力系统的可用输电能力(available transfer capability,ATC)进行研究,首先基于连续潮流法,提出了线性预测关键约束的改进算法,并引入到交流潮流模型中形成扩展潮流方程求解电力系统确定性ATC,且推导了电力系统ATC对风电等节点的注入功率波动的灵敏度快速估算模型。在此基础上,结合风电并网系统的多维可视化注入功率空间,提出了一种采用分层类聚算法划分蒙特卡罗抽样样本,综合考虑发电机随机故障、线路随机故障、风电场风速、发电机出力和负荷波动等多种不确定因素的概率ATC快速计算方法,最后通过算例分析验证了该算法的快速有效性。