This paper presents a novel idea of utilizing the reactional torque of the conventional electric motor as a linear output for propulsion in addition to the conventional torque output of the rotor. The idea is demonstr...This paper presents a novel idea of utilizing the reactional torque of the conventional electric motor as a linear output for propulsion in addition to the conventional torque output of the rotor. The idea is demonstrated by a theoretical proposal of linearizing the stator of one of the most used motors </span><span style="font-family:Verdana;">in Electrical Vehicles and Hybrid Vehicles</span><span style="font-family:""><span style="font-family:Verdana;">. The proposed Linear Stator Motor is a </span><span style="font-family:Verdana;">simple modification without involving any functional change of the conventional motor. Though theoretical, the indicated possible input </span><span style="font-family:Verdana;">energy saving of more than 75% as compared to the conventional motor is no surprise, as by linearizing the stator, an almost equal linear propulsion output is added to the conventional rotor output. In addition to this remarkable saving in input energy, the proposed Linear Stator Motor that suits all type</span></span><span style="font-family:Verdana;">s</span><span style="font-family:Verdana;"> of vehicle</span><span style="font-family:Verdana;">s</span><span style="font-family:Verdana;">, can maintain propulsion without the need for a mechanical transmission system. Also, in </span><span style="font-family:Verdana;">the </span><span style="font-family:Verdana;">case of watercraft and aircraft vehicles, no external mechanical propulsion drive system is required. It is just an internal force that can push the vehicle forward, backward</span><span style="font-family:Verdana;">,</span><span style="font-family:Verdana;"> or laterally, while the conventional rotor output can be utilized for energy recovery by driving a DC generator.展开更多
The first part of this paper is presents a method for producing the composite which shows ferromagnetic, highly-elastic and electrically-conducting properties. This composite consists of ferromagnetic particles of the...The first part of this paper is presents a method for producing the composite which shows ferromagnetic, highly-elastic and electrically-conducting properties. This composite consists of ferromagnetic particles of the size 0.15-0.25 mm made of the chemically pure iron. The mentioned particles were dispersed in the elastic porous silicone the matrix with pores of the size 0.15-0.25 mm. Colloidal graphite particles of the size not exceeding 0.5 μm were added to the matrix to increase electrical conductivity. The production method consist in mixing particles of iron, graphite and sodium chloride with non-polymerized silicone and rinsing salt particles by water after the matrix polymerization. In its second part the paper provides a description of the measurement system for longitudinal magnetostriction and the Hall voltage. The magnetic field with the induction of ± 8 T produced by the Bitter type magnet was applied to the composite samples. The supplying voltage was applied to these samples and the Hall voltage was measured at the electrodes glued to them. The longitudinal magnetostriction was measured by means of the capacitor with a variable capacity placed at the upper surface of these samples. The linear magnetostriction exceeding ± 6 % and the Hall voltage reaching ± 5.5 nV were detected by the conducted measurements. Both the longitudinal magnetostriction and the Hall voltage show nonlinear changes and hysteresis lopes during the magnetic field application and the supplying current flow. The coupling of these changes and other regularities observed in the investigated composites and especially their non-linearity and hysteresis, are discussed in the final part of the paper.展开更多
文摘This paper presents a novel idea of utilizing the reactional torque of the conventional electric motor as a linear output for propulsion in addition to the conventional torque output of the rotor. The idea is demonstrated by a theoretical proposal of linearizing the stator of one of the most used motors </span><span style="font-family:Verdana;">in Electrical Vehicles and Hybrid Vehicles</span><span style="font-family:""><span style="font-family:Verdana;">. The proposed Linear Stator Motor is a </span><span style="font-family:Verdana;">simple modification without involving any functional change of the conventional motor. Though theoretical, the indicated possible input </span><span style="font-family:Verdana;">energy saving of more than 75% as compared to the conventional motor is no surprise, as by linearizing the stator, an almost equal linear propulsion output is added to the conventional rotor output. In addition to this remarkable saving in input energy, the proposed Linear Stator Motor that suits all type</span></span><span style="font-family:Verdana;">s</span><span style="font-family:Verdana;"> of vehicle</span><span style="font-family:Verdana;">s</span><span style="font-family:Verdana;">, can maintain propulsion without the need for a mechanical transmission system. Also, in </span><span style="font-family:Verdana;">the </span><span style="font-family:Verdana;">case of watercraft and aircraft vehicles, no external mechanical propulsion drive system is required. It is just an internal force that can push the vehicle forward, backward</span><span style="font-family:Verdana;">,</span><span style="font-family:Verdana;"> or laterally, while the conventional rotor output can be utilized for energy recovery by driving a DC generator.
文摘The first part of this paper is presents a method for producing the composite which shows ferromagnetic, highly-elastic and electrically-conducting properties. This composite consists of ferromagnetic particles of the size 0.15-0.25 mm made of the chemically pure iron. The mentioned particles were dispersed in the elastic porous silicone the matrix with pores of the size 0.15-0.25 mm. Colloidal graphite particles of the size not exceeding 0.5 μm were added to the matrix to increase electrical conductivity. The production method consist in mixing particles of iron, graphite and sodium chloride with non-polymerized silicone and rinsing salt particles by water after the matrix polymerization. In its second part the paper provides a description of the measurement system for longitudinal magnetostriction and the Hall voltage. The magnetic field with the induction of ± 8 T produced by the Bitter type magnet was applied to the composite samples. The supplying voltage was applied to these samples and the Hall voltage was measured at the electrodes glued to them. The longitudinal magnetostriction was measured by means of the capacitor with a variable capacity placed at the upper surface of these samples. The linear magnetostriction exceeding ± 6 % and the Hall voltage reaching ± 5.5 nV were detected by the conducted measurements. Both the longitudinal magnetostriction and the Hall voltage show nonlinear changes and hysteresis lopes during the magnetic field application and the supplying current flow. The coupling of these changes and other regularities observed in the investigated composites and especially their non-linearity and hysteresis, are discussed in the final part of the paper.