The hybrid vibration isolation, which takes advantages of both the passive and active approaches, has been an important solution for space missions. The objective of this paper is to design a vibration isolation platf...The hybrid vibration isolation, which takes advantages of both the passive and active approaches, has been an important solution for space missions. The objective of this paper is to design a vibration isolation platform for payloads on spacecrafts with the robust, wide bandwidth, and multi-degree-of-freedom(MDOF). The proposed solution is based on a parallel mechanism with six voice-coil motors(VCMs) as the actuators. The linear active disturbance resistance control(LADRC) algorithm is used for the active control. Numerical simulation results show that the vibration isolation platform performs effectively over a wide bandwidth, and the resonance introduced by the passive isolation is eliminated. The system robustness to the uncertainties of the structure is also verified by simulation.展开更多
The trajectory tracking control for a 6-DOF robot manipulator with multiple inputs and outputs,non-linearity and strong coupling is studied.Firstly,a dynamical model for the 6-DOF robot manipulator is designed.From th...The trajectory tracking control for a 6-DOF robot manipulator with multiple inputs and outputs,non-linearity and strong coupling is studied.Firstly,a dynamical model for the 6-DOF robot manipulator is designed.From the view point of practical engineering,considering the model uncertainties and external disturbances,the robot manipulator is divided into 6 independent joint subsystems,and a linear active disturbance rejection controller(LADRC)is developed to track trajectory for each subsystem respectively.LADRC has few parameters that are easy to be adjusted in engineering.Linear expansion state observer(LESO)as the uncertainty observer is able to estimate the general uncertainties effectively.Eventually,the validity and robustness of the proposed method adopted in 6-DOF robot manipulator are demonstrated via numerical simulations and 6-DOF robot manipulator experiments,which is of practical value in engineering application.展开更多
Dynamic characteristics and tracking precision are studied in the photoelectric tracking system and a linear active disturbance rejection control( LADRC) scheme is proposed for position loop. A current and speed contr...Dynamic characteristics and tracking precision are studied in the photoelectric tracking system and a linear active disturbance rejection control( LADRC) scheme is proposed for position loop. A current and speed controller is designed by a transfer function model,which is obtained by adaptive differential evolution. Model error,friction and nonlinear factor existing in position loop are treated as ‘disturbance',which is estimated and compensated by generalized proportional integral( GPI)observer. Comparative results are provided to demonstrate the remarkable performance of the proposed method. It turns out that the proposed scheme is successful and has superior features,such as quick dynamic response,low overshoot and high tracking precision. Furthermore,with the proposed method,friction is suppressed effectively.展开更多
A modified four-dimensional linear active disturbance rejection control(LADRC)strategy is proposed for a dual three-phase permanent magnet synchronous generator(DTP-PMSG)system to reduce cross-coupling between the d a...A modified four-dimensional linear active disturbance rejection control(LADRC)strategy is proposed for a dual three-phase permanent magnet synchronous generator(DTP-PMSG)system to reduce cross-coupling between the d and q axis currents in the d-q subspace and harmonic currents in the x-y subspace.In the d-q subspace,the proposed strategy uses a model-based LADRC to enhance the decoupling effect between the d and q axes and the disturbance rejection ability against parameter variation.In the x-y subspace,the 5th and 7th harmonic current suppression abilities are improved by using quasi-resonant units parallel to the extended state observer of the traditional LADRC.The proposed modified LADRC strategy improved both the steady-state performance and dynamic response of the DTP-PMSG system.The experimental results demonstrate that the proposed strategy is both feasible and effective.展开更多
The modular multilevel converters(MMCs) are popularly used in high-voltage direct current(HVDC) transmission systems. However, for the direct modulation based MMC, its complex internal dynamics and the interaction wit...The modular multilevel converters(MMCs) are popularly used in high-voltage direct current(HVDC) transmission systems. However, for the direct modulation based MMC, its complex internal dynamics and the interaction with the grid impedance would induce the frequency coupling effect, which may lead to instability issues, especially in the case of weak grid. To effectively suppress the sub-and super-synchronous oscillations, this paper proposes a linear active disturbance rejection control(LADRC) based MMC control strategy. The LADRC mainly consists of the linear extended state observer(LESO) and the linear state error feedback(LSEF). And it is a potential method to enhance the system stability margin, attributing to its high anti-interference capability and good tracking performance. Thereupon, the system small-signal impedance model considering frequency coupling is established. And the effect of the introduction of the LADRC on the system stability is further investigated using the Nyquist criterion. Particularly, the influences of key control parameters on the stability are discussed in detail. Meanwhile, the impact of LADRC on the transient performance is explored through closed-loop zero poles. Finally, the correctness of the theoretical analysis and the effectiveness of the proposed control strategy are verified via electromagnetic simulations.展开更多
—With the increase of converter-based renewable energy generation connected into the power grid, the interaction between renewable energy and grid impedance has introduced lots of new issues, among which the sub-and ...—With the increase of converter-based renewable energy generation connected into the power grid, the interaction between renewable energy and grid impedance has introduced lots of new issues, among which the sub-and super-synchronous oscillation phenomenon makes a big concern. The linear active disturbance rejection control(LADRC) is a potential way to improve the damping characteristics of the grid-connected system, but the key factors and influencing mechanism on system stability are unknown. This paper establishes the equivalent impedance and coupling admittance models of a typical three-phase grid-connected converter. Then, the influence of the key factors such as the bandwidth of the LADRC and grid impedance on the stability and frequency coupling effect is assessed in detail. Finally, the theoretical analysis results are verified by simulations and experiments.展开更多
In this paper,a linear/nonlinear switching active disturbance rejection control(SADRC)based decoupling control approach is proposed to deal with some difficult control problems in a class of multi-input multi-output(M...In this paper,a linear/nonlinear switching active disturbance rejection control(SADRC)based decoupling control approach is proposed to deal with some difficult control problems in a class of multi-input multi-output(MIMO)systems such as multi-variables,disturbances,and coupling,etc.Firstly,the structure and parameter tuning method of SADRC is introduced into this paper.Followed on this,virtual control variables are adopted into the MIMO systems,making the systems decoupled.Then the SADRC controller is designed for every subsystem.After this,a stability analyzed method via the Lyapunov function is proposed for the whole system.Finally,some simulations are presented to demonstrate the anti-disturbance and robustness of SADRC,and results show SADRC has a potential applications in engineering practice.展开更多
This paper proposes a liner active disturbance rejection control(LADRC) method based on the Q-Learning algorithm of reinforcement learning(RL) to control the six-degree-of-freedom motion of an autonomous underwater ve...This paper proposes a liner active disturbance rejection control(LADRC) method based on the Q-Learning algorithm of reinforcement learning(RL) to control the six-degree-of-freedom motion of an autonomous underwater vehicle(AUV).The number of controllers is increased to realize AUV motion decoupling.At the same time, in order to avoid the oversize of the algorithm, combined with the controlled content, a simplified Q-learning algorithm is constructed to realize the parameter adaptation of the LADRC controller.Finally, through the simulation experiment of the controller with fixed parameters and the controller based on the Q-learning algorithm, the rationality of the simplified algorithm, the effectiveness of parameter adaptation, and the unique advantages of the LADRC controller are verified.展开更多
Aimed at the problem of instability in engine control caused by vector deflection in experiment of turbofan engines with Axisymmetric Vectoring Exhaust Nozzle(AVEN),a vector deflection stability control method of aero...Aimed at the problem of instability in engine control caused by vector deflection in experiment of turbofan engines with Axisymmetric Vectoring Exhaust Nozzle(AVEN),a vector deflection stability control method of aero-engine based on Linear Active Disturbance Rejection Control(LADRC)is proposed.Firstly,based on CFD numerical simulation,aerodynamic performance model of AVEN is established,and the aerodynamic load change rule of the nozzle throat area actuator during vector deflection is revealed.Subsequently,the integrated model of AVEN/-turbofan engine is established by Simulink/AMESim co-simulation.Finally,the nozzle throat area control loop based on LADRC is designed.The simulation results show that the integrated model can reflect the influence of vector deflection on the stability of the control system.The accuracy comparison between the fan rotor speed and the test data during vector deflection is larger than 1%,indicating a high degree of confidence.Compared with the conventional PID control,the designed LADRC control loop reduces the speed of the low-pressure rotor during vector deflection by 70%,which effectively improves the control stability of the vector deflection.Meanwhile,the fuel flow ratechange during the vector deflection process is smaller and more economical,which provides an important reference for engineering applications.展开更多
For a permanent magnet synchronous motor(PMSM)model predictive current control(MPCC)system,when the speed loop adopts proportional-integral(PI)control,speed regulation is easily affected by motor parameters,resulting ...For a permanent magnet synchronous motor(PMSM)model predictive current control(MPCC)system,when the speed loop adopts proportional-integral(PI)control,speed regulation is easily affected by motor parameters,resulting in the inability to balance the system robustness and dynamic performance.A PMSM optimal control strategy combining linear active disturbance rejection control(LADRC)and two-vector MPCC(TV-MPCC)is proposed.Firstly,a mathematical model of a PMSM is presented,and the PMSM TV-MPCC model is developed in the synchronous rotation coordinate system.Secondly,a first-order LADRC controller composed of a linear extended state observer and linear state error feedback is designed to reduce the complexity of parameter tuning while linearly simplifying the traditional active disturbance rejection control(ADRC)structure.Finally,the conventional PI speed regulator in the motor speed control system is replaced by the designed LADRC controller.The simulation results show that the speed control system using LADRC can effectively deal with the changes in motor parameters and has better robustness and dynamic performance than PI control and similar methods.The system has a fast motor speed response,small overshoot,strong anti-interference,and no steady-state error,and the total harmonic distortion is reduced.展开更多
基金the National Natural Science Foundation of China (No. 11572215)the Fundamental Research Funds for the Central Universities (No. N160503002)the China Scholarship Council。
文摘The hybrid vibration isolation, which takes advantages of both the passive and active approaches, has been an important solution for space missions. The objective of this paper is to design a vibration isolation platform for payloads on spacecrafts with the robust, wide bandwidth, and multi-degree-of-freedom(MDOF). The proposed solution is based on a parallel mechanism with six voice-coil motors(VCMs) as the actuators. The linear active disturbance resistance control(LADRC) algorithm is used for the active control. Numerical simulation results show that the vibration isolation platform performs effectively over a wide bandwidth, and the resonance introduced by the passive isolation is eliminated. The system robustness to the uncertainties of the structure is also verified by simulation.
基金Supported by the National Natural Science Foundation of China(No.11672290)
文摘The trajectory tracking control for a 6-DOF robot manipulator with multiple inputs and outputs,non-linearity and strong coupling is studied.Firstly,a dynamical model for the 6-DOF robot manipulator is designed.From the view point of practical engineering,considering the model uncertainties and external disturbances,the robot manipulator is divided into 6 independent joint subsystems,and a linear active disturbance rejection controller(LADRC)is developed to track trajectory for each subsystem respectively.LADRC has few parameters that are easy to be adjusted in engineering.Linear expansion state observer(LESO)as the uncertainty observer is able to estimate the general uncertainties effectively.Eventually,the validity and robustness of the proposed method adopted in 6-DOF robot manipulator are demonstrated via numerical simulations and 6-DOF robot manipulator experiments,which is of practical value in engineering application.
基金Supported by the National High Technology Research and Development Programme of China(No.2015AA8082065)the National Natural Science Foundation of China(No.61205143)
文摘Dynamic characteristics and tracking precision are studied in the photoelectric tracking system and a linear active disturbance rejection control( LADRC) scheme is proposed for position loop. A current and speed controller is designed by a transfer function model,which is obtained by adaptive differential evolution. Model error,friction and nonlinear factor existing in position loop are treated as ‘disturbance',which is estimated and compensated by generalized proportional integral( GPI)observer. Comparative results are provided to demonstrate the remarkable performance of the proposed method. It turns out that the proposed scheme is successful and has superior features,such as quick dynamic response,low overshoot and high tracking precision. Furthermore,with the proposed method,friction is suppressed effectively.
基金Supported by the National Science Fund for Distinguished Young Scholars under Grant 52025073 and the Zhenjiang Key Research Program under Grant GY2020011.
文摘A modified four-dimensional linear active disturbance rejection control(LADRC)strategy is proposed for a dual three-phase permanent magnet synchronous generator(DTP-PMSG)system to reduce cross-coupling between the d and q axis currents in the d-q subspace and harmonic currents in the x-y subspace.In the d-q subspace,the proposed strategy uses a model-based LADRC to enhance the decoupling effect between the d and q axes and the disturbance rejection ability against parameter variation.In the x-y subspace,the 5th and 7th harmonic current suppression abilities are improved by using quasi-resonant units parallel to the extended state observer of the traditional LADRC.The proposed modified LADRC strategy improved both the steady-state performance and dynamic response of the DTP-PMSG system.The experimental results demonstrate that the proposed strategy is both feasible and effective.
基金supported in part by the National Natural Science Foundation of China (No.52077222)in part by the Natural Science Foundation of Shandong Province (No.ZR2020ME202)。
文摘The modular multilevel converters(MMCs) are popularly used in high-voltage direct current(HVDC) transmission systems. However, for the direct modulation based MMC, its complex internal dynamics and the interaction with the grid impedance would induce the frequency coupling effect, which may lead to instability issues, especially in the case of weak grid. To effectively suppress the sub-and super-synchronous oscillations, this paper proposes a linear active disturbance rejection control(LADRC) based MMC control strategy. The LADRC mainly consists of the linear extended state observer(LESO) and the linear state error feedback(LSEF). And it is a potential method to enhance the system stability margin, attributing to its high anti-interference capability and good tracking performance. Thereupon, the system small-signal impedance model considering frequency coupling is established. And the effect of the introduction of the LADRC on the system stability is further investigated using the Nyquist criterion. Particularly, the influences of key control parameters on the stability are discussed in detail. Meanwhile, the impact of LADRC on the transient performance is explored through closed-loop zero poles. Finally, the correctness of the theoretical analysis and the effectiveness of the proposed control strategy are verified via electromagnetic simulations.
基金supported in part by the National Natural Science Foundation of China (No. 52077222)the Fundamental Research Funds for the Central Universities (No. 19CX02016A)。
文摘—With the increase of converter-based renewable energy generation connected into the power grid, the interaction between renewable energy and grid impedance has introduced lots of new issues, among which the sub-and super-synchronous oscillation phenomenon makes a big concern. The linear active disturbance rejection control(LADRC) is a potential way to improve the damping characteristics of the grid-connected system, but the key factors and influencing mechanism on system stability are unknown. This paper establishes the equivalent impedance and coupling admittance models of a typical three-phase grid-connected converter. Then, the influence of the key factors such as the bandwidth of the LADRC and grid impedance on the stability and frequency coupling effect is assessed in detail. Finally, the theoretical analysis results are verified by simulations and experiments.
基金supported by the Scientific Research Innovation Development Foundation of Army Engineering University((2019)71).
文摘In this paper,a linear/nonlinear switching active disturbance rejection control(SADRC)based decoupling control approach is proposed to deal with some difficult control problems in a class of multi-input multi-output(MIMO)systems such as multi-variables,disturbances,and coupling,etc.Firstly,the structure and parameter tuning method of SADRC is introduced into this paper.Followed on this,virtual control variables are adopted into the MIMO systems,making the systems decoupled.Then the SADRC controller is designed for every subsystem.After this,a stability analyzed method via the Lyapunov function is proposed for the whole system.Finally,some simulations are presented to demonstrate the anti-disturbance and robustness of SADRC,and results show SADRC has a potential applications in engineering practice.
基金supported by the National Natural Science Foundation of China (6197317561973172)Tianjin Natural Science Foundation (19JCZDJC32800)。
文摘This paper proposes a liner active disturbance rejection control(LADRC) method based on the Q-Learning algorithm of reinforcement learning(RL) to control the six-degree-of-freedom motion of an autonomous underwater vehicle(AUV).The number of controllers is increased to realize AUV motion decoupling.At the same time, in order to avoid the oversize of the algorithm, combined with the controlled content, a simplified Q-learning algorithm is constructed to realize the parameter adaptation of the LADRC controller.Finally, through the simulation experiment of the controller with fixed parameters and the controller based on the Q-learning algorithm, the rationality of the simplified algorithm, the effectiveness of parameter adaptation, and the unique advantages of the LADRC controller are verified.
基金supported in part by the National Science and Technology Major Project,China(No.2017-V-0004-0054)in part by the Research on the Basic Problem of Intelligent Aeroengine,China(No.2017-JCJQ-ZD-047-21)+1 种基金in part by the Fundamental Research Funds for the Central Universities,China(No.NZ2020002)in part by the National Natural Science Foundation of China(No.51906102)。
文摘Aimed at the problem of instability in engine control caused by vector deflection in experiment of turbofan engines with Axisymmetric Vectoring Exhaust Nozzle(AVEN),a vector deflection stability control method of aero-engine based on Linear Active Disturbance Rejection Control(LADRC)is proposed.Firstly,based on CFD numerical simulation,aerodynamic performance model of AVEN is established,and the aerodynamic load change rule of the nozzle throat area actuator during vector deflection is revealed.Subsequently,the integrated model of AVEN/-turbofan engine is established by Simulink/AMESim co-simulation.Finally,the nozzle throat area control loop based on LADRC is designed.The simulation results show that the integrated model can reflect the influence of vector deflection on the stability of the control system.The accuracy comparison between the fan rotor speed and the test data during vector deflection is larger than 1%,indicating a high degree of confidence.Compared with the conventional PID control,the designed LADRC control loop reduces the speed of the low-pressure rotor during vector deflection by 70%,which effectively improves the control stability of the vector deflection.Meanwhile,the fuel flow ratechange during the vector deflection process is smaller and more economical,which provides an important reference for engineering applications.
文摘For a permanent magnet synchronous motor(PMSM)model predictive current control(MPCC)system,when the speed loop adopts proportional-integral(PI)control,speed regulation is easily affected by motor parameters,resulting in the inability to balance the system robustness and dynamic performance.A PMSM optimal control strategy combining linear active disturbance rejection control(LADRC)and two-vector MPCC(TV-MPCC)is proposed.Firstly,a mathematical model of a PMSM is presented,and the PMSM TV-MPCC model is developed in the synchronous rotation coordinate system.Secondly,a first-order LADRC controller composed of a linear extended state observer and linear state error feedback is designed to reduce the complexity of parameter tuning while linearly simplifying the traditional active disturbance rejection control(ADRC)structure.Finally,the conventional PI speed regulator in the motor speed control system is replaced by the designed LADRC controller.The simulation results show that the speed control system using LADRC can effectively deal with the changes in motor parameters and has better robustness and dynamic performance than PI control and similar methods.The system has a fast motor speed response,small overshoot,strong anti-interference,and no steady-state error,and the total harmonic distortion is reduced.