期刊文献+
共找到270篇文章
< 1 2 14 >
每页显示 20 50 100
ON DETERMINATION OF THE IMPULSIVE SOLUTIONS AND IMPULSIVE PROPERTIES TO LINEAR NON-HOMOGENEOUS MATRIX DIFFERENTIAL EQUATIONS
1
作者 Tan Liansheng 《Acta Mathematica Scientia》 SCIE CSCD 2000年第2期261-272,共12页
This note contains three main results.Firstly,a complete solution of the Linear Non-Homogeneous Matrix Differential Equations(LNHMDEs)is presented that takes into account both the non-zero initial conditions of the ps... This note contains three main results.Firstly,a complete solution of the Linear Non-Homogeneous Matrix Differential Equations(LNHMDEs)is presented that takes into account both the non-zero initial conditions of the pseudo state and the nonzero initial conditions of the input.Secondly,in order to characterise the dynamics of the LNHMDEs correctly,some important concepts such as the state,slow state(smooth state)and fast state(impulsive state)are generalized to the LNHMDE case and the solution of the LNHMDEs is separated into the smooth(slow)response and the fast(implusive)response.As a third result,a new characterization of the impulsive free initial conditions of the LNHMDEs is given. 展开更多
关键词 linear matrix differential equation impulsive and smooth solution impulsive free initial conditions {1}-inverse
下载PDF
Parameterized Solution to a Class of Sylvester Matrix Equations
2
作者 Yu-Peng Qiao Hong-Sheng Qi Dai-Zhan Cheng 《International Journal of Automation and computing》 EI 2010年第4期479-483,共5页
A class of formulas for converting linear matrix mappings into conventional linear mappings are presented. Using them, an easily computable numerical method for complete parameterized solutions of the Sylvester matrix... A class of formulas for converting linear matrix mappings into conventional linear mappings are presented. Using them, an easily computable numerical method for complete parameterized solutions of the Sylvester matrix equation AX - EXF = BY and its dual equation XA - FXE = YC are provided. It is also shown that the results obtained can be used easily for observer design. The method proposed in this paper is universally applicable to linear matrix equations. 展开更多
关键词 Sylvester matrix equation parameterized solution Kronecker product linear matrix equation Luenberger observers
下载PDF
Closed-form Solutions to the Matrix Equation AX-EXF=BY with F in Companion Form
3
作者 Bin Zhou Guang-Ren Duan 《International Journal of Automation and computing》 EI 2009年第2期204-209,共6页
A closed-form solution to the linear matrix equation AX-EXF = BY with X and Y unknown and matrix F being in a companion form is proposed, and two equivalent forms of this solution are also presented. The results provi... A closed-form solution to the linear matrix equation AX-EXF = BY with X and Y unknown and matrix F being in a companion form is proposed, and two equivalent forms of this solution are also presented. The results provide great convenience to the computation and analysis of the solutions to this class of equations, and can perform important functions in many analysis and design problems in descriptor system theory. The results proposed here are parallel to and more general than our early work about the linear matrix equation AX-XF = BY . 展开更多
关键词 linear matrix equations closed-form solutions right factorizations descriptor linear systems companion matrix.
下载PDF
Exact Solution of a Linear Difference Equation in a Finite Number of Steps
4
作者 Albert Iskhakov Sergey Skovpen 《Applied Mathematics》 2018年第3期287-290,共4页
An exact solution of a linear difference equation in a finite number of steps has been obtained. This refutes the conventional wisdom that a simple iterative method for solving a system of linear algebraic equations i... An exact solution of a linear difference equation in a finite number of steps has been obtained. This refutes the conventional wisdom that a simple iterative method for solving a system of linear algebraic equations is approximate. The nilpotency of the iteration matrix is the necessary and sufficient condition for getting an exact solution. The examples of iterative equations providing an exact solution to the simplest algebraic system are presented. 展开更多
关键词 linear Difference equation EXACT ITERATIVE solution of a System of linear ALGEBRAIC equations NILPOTENT matrix
下载PDF
Roughness of Exponential Estimates for Linear Functional Differential Equations 被引量:9
5
作者 Wang Zhen (Anhui University) 《大学数学》 1994年第S1期146-150,共5页
Assume that the fundamental solution matrix U (t, s ) of x’(t)=L(t, x,) satisfies |U(t,s)|≤Ke-e(t-s) for t≥s.If|(t,φ)|≤δ|φ(0)|with δ【a/K, then the fundamental solution matrix of the perturbed equation x’(t)=... Assume that the fundamental solution matrix U (t, s ) of x’(t)=L(t, x,) satisfies |U(t,s)|≤Ke-e(t-s) for t≥s.If|(t,φ)|≤δ|φ(0)|with δ【a/K, then the fundamental solution matrix of the perturbed equation x’(t)=L(t,x,)+(t ,x,) also possesses similar exponential estimate. For α=0, a similar result is given. 展开更多
关键词 linear functional DIFFERENTIAL equation FUNDAMENTAL solution matrix
下载PDF
On a Matrix Equation AX+XB=C over a Skew Field 被引量:1
6
作者 王卿文 秦建国 《Chinese Quarterly Journal of Mathematics》 CSCD 1993年第3期97-102,共6页
In this paper we study a matrix equation AX+BX=C(I)over an arbitrary skew field,and give a consistency criterion of(I)and an explicit expression of general solutions of(I).A convenient,simple and practical method of s... In this paper we study a matrix equation AX+BX=C(I)over an arbitrary skew field,and give a consistency criterion of(I)and an explicit expression of general solutions of(I).A convenient,simple and practical method of solving(I)is also given.As a particular case,we also give a simple method of finding a system of fundamental solutions of a homogeneous system of right linear equations over a skew field. 展开更多
关键词 matrix equation over a skew field fundamental system of solutions basic solution matrix subdirect product homogeneous system of right linear equations
下载PDF
A New Understanding on the Problem That the Quintic Equation Has No Radical Solutions
7
作者 Xiaochun Mei 《Advances in Pure Mathematics》 2020年第9期508-539,共32页
It is proved in this paper that Abel’s and Galois’s proofs that the quintic equations have no radical solutions are invalid. Due to Abel’s and Galois’s work about two hundred years ago, it was generally accepted t... It is proved in this paper that Abel’s and Galois’s proofs that the quintic equations have no radical solutions are invalid. Due to Abel’s and Galois’s work about two hundred years ago, it was generally accepted that general quintic equations had no radical solutions. However, Tang Jianer <i><span style="font-family:Verdana;font-size:12px;">et</span></i><i><span style="font-size:12px;font-family:Verdana;"> al</span><span style="font-size:12px;font-family:Verdana;">.</span></i><span style="font-size:10pt;font-family:;" "=""><span style="font-family:Verdana;font-size:12px;"> recently prove that there are radical solutions for some quintic equations with special forms. The theories of Abel and Galois cannot explain these results. On the other hand, Gauss </span><i><span style="font-family:Verdana;font-size:12px;">et</span></i></span><i><span style="font-size:12px;font-family:Verdana;"> al</span><span style="font-size:12px;font-family:Verdana;">.</span></i><span style="font-size:10pt;font-family:;" "=""><span style="font-family:Verdana;font-size:12px;"> proved the fundamental theorem of algebra. The theorem declared that there were </span><i><span style="font-family:Verdana;font-size:12px;">n</span></i><span style="font-family:Verdana;font-size:12px;"> solutions for the </span><i><span style="font-family:Verdana;font-size:12px;">n</span></i><span style="font-family:Verdana;font-size:12px;"> degree equations, including the radical and non-radical solutions. The theories of Abel and Galois contradicted with the fundamental theorem of algebra. Due to the reasons above, the proofs of Abel and Galois should be re-examined and re-evaluated. The author carefully analyzed the Abel’s original paper and found some serious mistakes. In order to prove that the general solution of algebraic equation</span></span><span style="font-size:10pt;font-family:;" "=""> </span><span style="font-size:12px;font-family:Verdana;">he proposed was effective for the cubic equation, Abel took the known solutions of cubic equation as a premise to calculate the parameters of his equation. Therefore, Abel’s proof is a logical circular argument and invalid. Besides, Abel confused the variables with the coefficients (constants) of algebraic equations. An expansion with 14 terms was written as 7 terms, 7 terms were missing.</span><span style="font-size:10pt;font-family:;" "=""> </span><span style="font-size:12px;font-family:Verdana;">We prefer to consider Galois’s theory as a hypothesis rather than a proof. Based on that permutation group </span><i><span style="font-size:12px;font-family:Verdana;">S</span></i><sub><span style="font-size:12px;font-family:Verdana;">5</span></sub><span style="font-size:12px;font-family:Verdana;"> had no true normal subgroup, Galois concluded that the quintic equations had no radical solutions, but these two problems had no inevitable logic connection actually. In order to prove the effectiveness of radical extension group of automorphism mapping for the cubic and quartic equations, in the Galois’s theory, some algebraic relations among the roots of equations were used to replace the root itself. This violated the original definition of automorphism mapping group, led to the confusion of concepts and arbitrariness. For the general cubic and quartic algebraic equations, the actual solving processes do not satisfy the tower structure of Galois’s solvable group. The resolvents of cubic and quartic equations are proved to have no symmetries of Galois’s soluble group actually. It is invalid to use the solvable group theory to judge whether the high degree equation has a radical solution. The conclusion of this paper is that there is only the </span><i><span style="font-size:10.0pt;font-family:;" "=""><span style="font-family:Verdana;font-size:12px;">S</span><sub><span style="font-family:Verdana;font-size:12px;">n</span></sub></span></i><span style="font-size:10pt;font-family:;" "=""><span style="font-family:Verdana;font-size:12px;"> symmetry for the </span><i><span style="font-family:Verdana;font-size:12px;">n</span></i><span style="font-family:Verdana;font-size:12px;"> degree algebraic equations. The symmetry of Galois’s solvable group does not exist. Mathematicians should get rid of the constraints of Abel and Galois’s theories, keep looking for the radical solutions of high degree equations.</span></span> 展开更多
关键词 Quintic equation Gauss basic Theorem of Algebra Radical solution Abel’s Theory Galois’s Theory Solvable group Lagrange’s Resolvents
下载PDF
应用线性方程组理论证明矩阵秩的性质 被引量:1
8
作者 张姗梅 刘耀军 《中央民族大学学报(自然科学版)》 2024年第2期62-68,共7页
利用矩阵秩的定义证明矩阵秩的性质时,需要使用行列式的性质,证明过程较为复杂。线性方程组解的理论与矩阵秩的内在联系,使得用线性方程组解的理论证明矩阵秩的性质成为可能。应用线性方程组解的理论,可将矩阵秩的等式证明转化为线性方... 利用矩阵秩的定义证明矩阵秩的性质时,需要使用行列式的性质,证明过程较为复杂。线性方程组解的理论与矩阵秩的内在联系,使得用线性方程组解的理论证明矩阵秩的性质成为可能。应用线性方程组解的理论,可将矩阵秩的等式证明转化为线性方程组解空间相等的证明;将矩阵秩的不等式的证明转化为解空间包含的证明。从行列式性质法的证明转化为集合间关系的证明,不仅简化了矩阵秩的性质的证明,而且证明过程便于理解。 展开更多
关键词 线性方程组的解 矩阵的秩 线性空间的维数
下载PDF
线性代数中的线性方程组方法 被引量:1
9
作者 王丽莎 陈媛 徐运阁 《高等数学研究》 2024年第1期62-65,84,共5页
本文从齐次线性方程组的同解理论、非零解的判定、解空间的维数公式、解空间与系数矩阵行空间的正交性等角度,阐述线性方程组方法在线性代数中的广泛应用.
关键词 齐次线性方程组 同解 矩阵的秩 正交
下载PDF
Linear mathematical model for the unique solution of 3D ptychographic iterative engine
10
作者 吴丽青 齐乃杰 +4 位作者 昌成成 陶华 何小亮 刘诚 朱健强 《Chinese Optics Letters》 SCIE EI CAS CSCD 2024年第5期1-7,共7页
Diffraction intensities of the 3D ptychographic iterative engine(3PIE)were written as a set of linear equations of the selfcorrelations of Fourier components of all sample slices,and an effective computing method was ... Diffraction intensities of the 3D ptychographic iterative engine(3PIE)were written as a set of linear equations of the selfcorrelations of Fourier components of all sample slices,and an effective computing method was developed to solve these linear equations for the transmission functions of all sample slices analytically.With both theoretical analysis and numerical simulations,this study revealed the underlying physics and mathematics of 3PIE and demonstrated for the first time,to our knowledge,that 3PIE can generate mathematically unique reconstruction even with noisy data. 展开更多
关键词 3D imaging 3D ptychographic iterative engine linear equation group unique solution
原文传递
探讨线性方程组求解问题
11
作者 林清华 《科技资讯》 2024年第13期232-235,共4页
对于线性方程组,只有在方程的个数等于未知量的个数,系数行列式不等于零的情况下,才可以使用克莱姆法则求得,也可以使用逆矩阵法求得。而对于一般的线性方程组,如何判定它是否有解、解是否唯一,以及在解不唯一的情况下,又该如何求出它... 对于线性方程组,只有在方程的个数等于未知量的个数,系数行列式不等于零的情况下,才可以使用克莱姆法则求得,也可以使用逆矩阵法求得。而对于一般的线性方程组,如何判定它是否有解、解是否唯一,以及在解不唯一的情况下,又该如何求出它的解。这个问题的解决,对理论和实际都具有十分重要的意义。以下以矩阵为工具,探求一般线性方程组解的情况和解的问题。 展开更多
关键词 线性方程组 系数矩阵 基础解析 通解
下载PDF
一类矩阵方程的解及其应用
12
作者 方建卫 袁晖坪 《重庆工商大学学报(自然科学版)》 2024年第6期121-125,共5页
目前许多力学问题,如计算物理、地质学、结构设计、分子光谱学、电学、参数识别、自动控制、商务智能、线性系统理论、大数据分析与动态分析等领域,都要依赖于矩阵方程。研究了矩阵方程AX=B的求解问题,给出了矩阵方程AX=B有解的新判别... 目前许多力学问题,如计算物理、地质学、结构设计、分子光谱学、电学、参数识别、自动控制、商务智能、线性系统理论、大数据分析与动态分析等领域,都要依赖于矩阵方程。研究了矩阵方程AX=B的求解问题,给出了矩阵方程AX=B有解的新判别条件及其通解表达式,推广了矩阵方程AX=B的判解条件和通解形式;例题表明简化了矩阵方程AX=B的求解过程,同时也简化了向量组的线性表示式和基到基的过渡矩阵计算,这对于充实矩阵方程的求解理论和简化计算均是有益的。 展开更多
关键词 初等变换 矩阵方程 通解 线性表示 过渡矩阵
下载PDF
常数变易法在微分方程求解中的应用探究
13
作者 旷雨阳 李兴华 王太荣 《南通职业大学学报》 2023年第2期73-75,共3页
常数变易法是解常微分方程行之有效的一种方法,是拉格朗日历经十一年研究的一种特殊的变量代换法。为探究常数变易法的教学拓展,将常数变易法应用于求解线性微分方程组和高阶线性微分方程,通过常数变易过程,给出简洁推演,建立通解公式,... 常数变易法是解常微分方程行之有效的一种方法,是拉格朗日历经十一年研究的一种特殊的变量代换法。为探究常数变易法的教学拓展,将常数变易法应用于求解线性微分方程组和高阶线性微分方程,通过常数变易过程,给出简洁推演,建立通解公式,并以典型示例,阐明了公式的实际操作过程。 展开更多
关键词 常数变易法 线性微分方程组 基解矩阵 高阶线性微分方程 通解
下载PDF
线性方程组的基础解系
14
作者 周仲旺 《高等数学研究》 2023年第1期74-75,共2页
本文研究了线性方程组的基础解系.
关键词 线性方程组 基础解系 线性方程组的通解
下载PDF
A Class of Quadratic Matrix Equations over Finite Fields
15
作者 Yin Chen Xinxin Zhang 《Algebra Colloquium》 SCIE CSCD 2023年第1期169-180,共12页
We exhibit an explicit formula for the cardinality of solutions to a class of quadratic matrix equations over finite fields.We prove that the orbits of these solutions under the natural conjugation action of the gener... We exhibit an explicit formula for the cardinality of solutions to a class of quadratic matrix equations over finite fields.We prove that the orbits of these solutions under the natural conjugation action of the general linear groups can be separated by classical conjugation invariants defined by characteristic polynomials.We also find a generating set for the vanishing ideal of these orbits. 展开更多
关键词 matrix equations general linear groups finite fields separating invariants
原文传递
Jordan定理及其应用
16
作者 黄述亮 《四川文理学院学报》 2023年第2期17-22,共6页
Jordan标准形是矩阵论中的重要概念,在代数学中发挥着重要作用.Jordan定理是解决相关数学问题的有力工具,文章通过例子展示其在矩阵分解、矩阵相似、特征值的计算及微分线性方程组的求解等方面的应用.
关键词 JORDAN标准形 矩阵分解 线性微分方程组
下载PDF
大型稀疏线性方程组的数值解法
17
作者 刘长河 《北京建筑大学学报》 2023年第1期103-108,共6页
在许多利用经典算法求线性方程组的数值解的过程中,系数矩阵中的零元素对计算结果没有影响,也就没有存储的必要。如果是大型稀疏线性方程组,这样可以节省大量的存储空间。为此,提出一种在MATLAB语言环境中仅储存系数矩阵中非零元素的方... 在许多利用经典算法求线性方程组的数值解的过程中,系数矩阵中的零元素对计算结果没有影响,也就没有存储的必要。如果是大型稀疏线性方程组,这样可以节省大量的存储空间。为此,提出一种在MATLAB语言环境中仅储存系数矩阵中非零元素的方法:利用3个1维数组储存系数矩阵中的非零元素及其在矩阵中的位置(行号,列号)。在编程时,忽略零元素参与的运算,可使计算量大大减少。这2个方面的改进使得利用经典算法求解大型稀疏线性方程组成为可能。借助于Jacobi迭代法进行的一系列数值实验,验证了这一探索的可行性。 展开更多
关键词 稀疏矩阵 大型矩阵 线性方程组 数值解
下载PDF
初等行变换求齐次线性方程组通解的教学探讨
18
作者 尹江华 马国栋 《科技风》 2023年第20期119-121,共3页
求齐次线性方程组的通解在“线性代数”与“高等代数”的教学中占据着重要地位。教材的解法是利用初等行变换,将系数矩阵化为行阶梯形矩阵,从而确定基本未知量和自由未知量,然后根据行阶梯形矩阵写出对应的齐次线性方程组,并用自由未知... 求齐次线性方程组的通解在“线性代数”与“高等代数”的教学中占据着重要地位。教材的解法是利用初等行变换,将系数矩阵化为行阶梯形矩阵,从而确定基本未知量和自由未知量,然后根据行阶梯形矩阵写出对应的齐次线性方程组,并用自由未知量表示基本未知量,从而得到齐次线性方程组的通解。本文通过利用初等行变换将系数矩阵化为行最简形矩阵,直接产生基础解系,进而获得齐次线性方程组的通解。 展开更多
关键词 初等行变换 齐次线性方程组 通解 行最简形
下载PDF
矩阵方程A_1X_1B_1+A_2X_2B_2+…+A_lX_lB_l=C的中心对称解及其最佳逼近 被引量:13
19
作者 彭卓华 胡锡炎 张磊 《数学物理学报(A辑)》 CSCD 北大核心 2009年第1期193-207,共15页
设矩阵X=(x_(ij))∈R^(n×n),如果x_(ij)=x_(n+1-i,n+1-j)(i,j=1,2,…,n),则称X是中心对称矩阵.该文构造了一种迭代法求矩阵方程A_1X_1B_1+A_2X_2B_2+…+A_lX_lB_l=C的中心对称解组(其中[X_1,X_2,…,X_l]是实矩阵组).当矩阵方程相容... 设矩阵X=(x_(ij))∈R^(n×n),如果x_(ij)=x_(n+1-i,n+1-j)(i,j=1,2,…,n),则称X是中心对称矩阵.该文构造了一种迭代法求矩阵方程A_1X_1B_1+A_2X_2B_2+…+A_lX_lB_l=C的中心对称解组(其中[X_1,X_2,…,X_l]是实矩阵组).当矩阵方程相容时,对任意初始的中心对称矩阵组[X_1^((0)),X_2^((0)),…,X_l^((0))],在没有舍入误差的情况下,经过有限步迭代,得到它的一个中心对称解组,并且,通过选择一种特殊的中心对称矩阵组,得到它的最小范数中心对称解组.另外,给定中心对称矩阵组[(?)_1,(?)_2,…,(?)_l],通过求矩阵方程A_1(?)_1B_1+A_2(?)_2B_2+…+A_l(?)_lB_l=(?)(其中(?)=C-A_1(?)_1B_1-A_2(?)_2B_2-…-A_l(?)_lB_l)的中心对称解组,得到它的最佳逼近中心对称解组.实例表明这种方法是有效的. 展开更多
关键词 迭代法 矩阵方程 中心对称解组 最小范数解组 最佳逼近解组.
下载PDF
管式间接蒸发冷却器传递过程的解析解及验证 被引量:10
20
作者 张旭 陈君红 陈沛霖 《同济大学学报(自然科学版)》 EI CAS CSCD 北大核心 1998年第4期461-465,共5页
根据换热器计算理论,结合管式间接蒸发冷却器中热湿交换过程的特点,将其抽象为管束内一次空气不混合,管束外二次空气和水膜横向混合的叉流换热器.计及二次空气和水膜的热湿交换,建立了描述换热器中热湿交换过程的理论模型,利用实... 根据换热器计算理论,结合管式间接蒸发冷却器中热湿交换过程的特点,将其抽象为管束内一次空气不混合,管束外二次空气和水膜横向混合的叉流换热器.计及二次空气和水膜的热湿交换,建立了描述换热器中热湿交换过程的理论模型,利用实验测出的边界条件对基本方程组进行求解,得到了一次空气、水膜温度及二次空气焓在空间分布的解析表达式.用试验结果对理论计算值进行了验证,说明建立的理论模型具有较好的可靠性. 展开更多
关键词 管式 间接蒸发冷却器 传递过程 方程组 解析解
下载PDF
上一页 1 2 14 下一页 到第
使用帮助 返回顶部