The maximum bending moment or curvature in the neighborhood of the touch down point (TDP) and the maximum tension at the top are two key parameters to be controlled during deepwater J-lay installation in order to en...The maximum bending moment or curvature in the neighborhood of the touch down point (TDP) and the maximum tension at the top are two key parameters to be controlled during deepwater J-lay installation in order to ensure the safety of the pipe-laying operation and the normal operation of the pipelines. In this paper, the non-linear governing differential equation for getting the two parameters during J-lay installation is proposed and solved by use of singular perturbation technique, from which the asymptotic expression of stiffened catenary is obtained and the theoretical expression of its static geometric configuration as well as axial tension and bending moment is derived. Finite element results are applied to verify this method. Parametric investigation is conducted to analyze the influences of the seabed slope, unit weight, flexural stiffness, water depth, and the pipe-laying tower angle on the maximum tension and moment of pipeline by this method, and the results show how to control the installation process by changing individual parameters.展开更多
This paper focuses on the H∞ controller design for linear systems with time-varying delays and norm-bounded parameter perturbations in the system state and control/disturbance. On the existence of delayed/undelayed f...This paper focuses on the H∞ controller design for linear systems with time-varying delays and norm-bounded parameter perturbations in the system state and control/disturbance. On the existence of delayed/undelayed full state feedback controllers, we present a sufficient condition and give a design method in the form of Riccati equation. The controller can not only stabilize the time-delay system, but also make the H∞ norm of the closed-loop system be less than a given bound. This result practically generalizes the related results in current literature.展开更多
The problem of oblique wave (internal wave) propagation over a small deformation in a channel flow consisting of two layers was considered. The upper fluid was assumed to be bounded above by a rigid lid, which is an...The problem of oblique wave (internal wave) propagation over a small deformation in a channel flow consisting of two layers was considered. The upper fluid was assumed to be bounded above by a rigid lid, which is an approximation for the free surface, and the lower one was bounded below by an impermeable bottom surface having a small deformation; the channel was unbounded in the horizontal directions. Assuming irrotational motion, the perturbation technique was employed to calculate the first-order corrections of the velocity potential in the two fluids by using Green's integral theorem suitably with the introduction of appropriate Green's functions. Those functions help in calculating the reflection and transmission coefficients in terms of integrals involving the shape ftmction c(x) representing the bottom deformation. Three-dimensional linear water wave theory was utilized for formulating the relevant boundary value problem. Two special examples of bottom deformation were considered to validate the results. Consideration of a patch of sinusoidal ripples (having the same wave number) shows that the reflection coefficient is an oscillatory function of the ratio of twice the x-component of the wave number to the ripple wave number. When this ratio approaches one, the theory predicts a resonant interaction between the bed and the interface, and the reflection coefficient becomes a multiple of the number of ripples. High reflection of incident wave energy occurs if this number is large. Similar results were observed for a patch of sinusoidal ripples having different wave numbers. It was also observed that for small angles of incidence, the reflected energy is greater compared to other angles of incidence up to π/ 4. These theoretical observations are supported by graphical results.展开更多
The scattering problem involving water waves by small undulation on the porous ocean-bed in a two-layer fluid,is investigated within the framework of the two-dimensional linear water wave theory where the upper layer ...The scattering problem involving water waves by small undulation on the porous ocean-bed in a two-layer fluid,is investigated within the framework of the two-dimensional linear water wave theory where the upper layer is covered by a thin uniform sheet of ice modeled as a thin elastic plate.In such a two-layer fluid there exist waves with two different modes,one with a lower wave number propagate along the ice-cover whilst those with a higher wave number propagate along the interface.An incident wave of a particular wave number gets reflected and transmitted over the bottom undulation into waves of both modes.Perturbation analysis in conjunction with the Fourier transform technique is used to derive the first-order corrections of reflection and transmission coefficients for both the modes due to incident waves of two different modes.One special type of bottom topography is considered as an example to evaluate the related coefficients in detail.These coefficients are depicted in graphical forms to demonstrate the transformation of wave energy between the two modes and also to illustrate the effects of the ice sheet and the porosity of the undulating bed.展开更多
Obliquely incident water wave scattering by an uneven channel-bed in the form of a small bottom undulation in a two-layer fluid is investigated within the frame work of three-dimensional linear water wave theory. The ...Obliquely incident water wave scattering by an uneven channel-bed in the form of a small bottom undulation in a two-layer fluid is investigated within the frame work of three-dimensional linear water wave theory. The upper fluid is assumed to be bounded above by a rigid lid, while the lower one is bounded below by a bottom surface having a small deformation and the channel is unbounded in the horizontal directions. Assuming irrotational motion, perturbation technique is employed to calculate the first-order corrections to the velocity potentials in the two fluids by using Fourier transform approximately, and also to calculate the reflection and transmission coefficients in terms of integrals involving the shape function representing the bottom deformation. Consideration of a patch of sinusoidal ripples shows that the reflection coefficient is an oscillatory function of the ratio of twice the component of the wave number along x-axis and the ripple wave number. When this ratio approaches one, the theory predicts a resonant interaction between the bed and interface, and the reflection coefficient becomes a multiple of the number of ripples. High reflection of incident wave energy occurs if this number is large.展开更多
We consider a finite horizon,zero-sum linear quadratic differential game.The feature of this game is that a weight matrix of the minimiser’s control cost in the cost functional is singular.Due to this singularity,the...We consider a finite horizon,zero-sum linear quadratic differential game.The feature of this game is that a weight matrix of the minimiser’s control cost in the cost functional is singular.Due to this singularity,the game can be solved neither by applying the Isaacs MinMax principle nor using the Bellman–Isaacs equation approach,i.e.this game is singular.Aprevious paper of one of the authors analysed such a game in the case where the cost functional does not contain the minimiser’s control cost at all,i.e.the weight matrix of this cost equals zero.In this case,all coordinates of the minimiser’s control are singular.In the present paper,we study the general case where the weight matrix of the minimiser’s control cost,being singular,is not,in general,zero.This means that only a part of the coordinates of the minimiser’s control is singular,while others are regular.The considered game is treated by a regularisation,i.e.by its approximate conversion to an auxiliary regular game.The latter has the same equation of dynamics and a similar cost functional augmented by an integral of the squares of the singular control coordinates with a small positive weight.Thus,the auxiliary game is a partial cheap control differential game.Based on a singular perturbation’s asymptotic analysis of this auxiliary game,the existence of the value of the original(singular)game is established,and its expression is obtained.The maximiser’s optimal state feedback strategy and the minimising control sequence in the original game are designed.It is shown that the coordinates of the minimising control sequence,corresponding to the regular coordinates of the minimiser’s control,are point-wise convergent in the class of regular functions.The optimal trajectory sequence and the optimal trajectory in the considered singular game also are obtained.An illustrative example is presented.展开更多
基金financially supported by the National Basic Research Program of China(Grant No.2011CB013702)the National Natural Science Foundation of China(Grant No.50979113).1
文摘The maximum bending moment or curvature in the neighborhood of the touch down point (TDP) and the maximum tension at the top are two key parameters to be controlled during deepwater J-lay installation in order to ensure the safety of the pipe-laying operation and the normal operation of the pipelines. In this paper, the non-linear governing differential equation for getting the two parameters during J-lay installation is proposed and solved by use of singular perturbation technique, from which the asymptotic expression of stiffened catenary is obtained and the theoretical expression of its static geometric configuration as well as axial tension and bending moment is derived. Finite element results are applied to verify this method. Parametric investigation is conducted to analyze the influences of the seabed slope, unit weight, flexural stiffness, water depth, and the pipe-laying tower angle on the maximum tension and moment of pipeline by this method, and the results show how to control the installation process by changing individual parameters.
基金This project was supported by the National Natural Science Foundation of China (No. 69974022).
文摘This paper focuses on the H∞ controller design for linear systems with time-varying delays and norm-bounded parameter perturbations in the system state and control/disturbance. On the existence of delayed/undelayed full state feedback controllers, we present a sufficient condition and give a design method in the form of Riccati equation. The controller can not only stabilize the time-delay system, but also make the H∞ norm of the closed-loop system be less than a given bound. This result practically generalizes the related results in current literature.
文摘The problem of oblique wave (internal wave) propagation over a small deformation in a channel flow consisting of two layers was considered. The upper fluid was assumed to be bounded above by a rigid lid, which is an approximation for the free surface, and the lower one was bounded below by an impermeable bottom surface having a small deformation; the channel was unbounded in the horizontal directions. Assuming irrotational motion, the perturbation technique was employed to calculate the first-order corrections of the velocity potential in the two fluids by using Green's integral theorem suitably with the introduction of appropriate Green's functions. Those functions help in calculating the reflection and transmission coefficients in terms of integrals involving the shape ftmction c(x) representing the bottom deformation. Three-dimensional linear water wave theory was utilized for formulating the relevant boundary value problem. Two special examples of bottom deformation were considered to validate the results. Consideration of a patch of sinusoidal ripples (having the same wave number) shows that the reflection coefficient is an oscillatory function of the ratio of twice the x-component of the wave number to the ripple wave number. When this ratio approaches one, the theory predicts a resonant interaction between the bed and the interface, and the reflection coefficient becomes a multiple of the number of ripples. High reflection of incident wave energy occurs if this number is large. Similar results were observed for a patch of sinusoidal ripples having different wave numbers. It was also observed that for small angles of incidence, the reflected energy is greater compared to other angles of incidence up to π/ 4. These theoretical observations are supported by graphical results.
基金Supprted by the ISIRD grant(Ref.No.16-3/10/IITRPR/Acad/116)
文摘The scattering problem involving water waves by small undulation on the porous ocean-bed in a two-layer fluid,is investigated within the framework of the two-dimensional linear water wave theory where the upper layer is covered by a thin uniform sheet of ice modeled as a thin elastic plate.In such a two-layer fluid there exist waves with two different modes,one with a lower wave number propagate along the ice-cover whilst those with a higher wave number propagate along the interface.An incident wave of a particular wave number gets reflected and transmitted over the bottom undulation into waves of both modes.Perturbation analysis in conjunction with the Fourier transform technique is used to derive the first-order corrections of reflection and transmission coefficients for both the modes due to incident waves of two different modes.One special type of bottom topography is considered as an example to evaluate the related coefficients in detail.These coefficients are depicted in graphical forms to demonstrate the transformation of wave energy between the two modes and also to illustrate the effects of the ice sheet and the porosity of the undulating bed.
基金partially supported by a research grant from Department of Science and Technology(DST),India(No.SB/FTP/MS-003/2013)
文摘Obliquely incident water wave scattering by an uneven channel-bed in the form of a small bottom undulation in a two-layer fluid is investigated within the frame work of three-dimensional linear water wave theory. The upper fluid is assumed to be bounded above by a rigid lid, while the lower one is bounded below by a bottom surface having a small deformation and the channel is unbounded in the horizontal directions. Assuming irrotational motion, perturbation technique is employed to calculate the first-order corrections to the velocity potentials in the two fluids by using Fourier transform approximately, and also to calculate the reflection and transmission coefficients in terms of integrals involving the shape function representing the bottom deformation. Consideration of a patch of sinusoidal ripples shows that the reflection coefficient is an oscillatory function of the ratio of twice the component of the wave number along x-axis and the ripple wave number. When this ratio approaches one, the theory predicts a resonant interaction between the bed and interface, and the reflection coefficient becomes a multiple of the number of ripples. High reflection of incident wave energy occurs if this number is large.
文摘We consider a finite horizon,zero-sum linear quadratic differential game.The feature of this game is that a weight matrix of the minimiser’s control cost in the cost functional is singular.Due to this singularity,the game can be solved neither by applying the Isaacs MinMax principle nor using the Bellman–Isaacs equation approach,i.e.this game is singular.Aprevious paper of one of the authors analysed such a game in the case where the cost functional does not contain the minimiser’s control cost at all,i.e.the weight matrix of this cost equals zero.In this case,all coordinates of the minimiser’s control are singular.In the present paper,we study the general case where the weight matrix of the minimiser’s control cost,being singular,is not,in general,zero.This means that only a part of the coordinates of the minimiser’s control is singular,while others are regular.The considered game is treated by a regularisation,i.e.by its approximate conversion to an auxiliary regular game.The latter has the same equation of dynamics and a similar cost functional augmented by an integral of the squares of the singular control coordinates with a small positive weight.Thus,the auxiliary game is a partial cheap control differential game.Based on a singular perturbation’s asymptotic analysis of this auxiliary game,the existence of the value of the original(singular)game is established,and its expression is obtained.The maximiser’s optimal state feedback strategy and the minimising control sequence in the original game are designed.It is shown that the coordinates of the minimising control sequence,corresponding to the regular coordinates of the minimiser’s control,are point-wise convergent in the class of regular functions.The optimal trajectory sequence and the optimal trajectory in the considered singular game also are obtained.An illustrative example is presented.