Knowing the locations of nodes in wireless sensor networks (WSN) is essential for many applications. Nodes in a WSN can have multiple capabilities and exploiting one or more of the capabilities can help to solve the l...Knowing the locations of nodes in wireless sensor networks (WSN) is essential for many applications. Nodes in a WSN can have multiple capabilities and exploiting one or more of the capabilities can help to solve the localization problem. In this paper, we assume that each node in a WSN has the capability of distance measurement and present a location computation technique called linear intersection for node localization. We also propose an applied localization model using linear intersection and do some concerned experiments to estimate the location computation algorithm.展开更多
The performance of conventional direction of arrival(DOA)method is greatly affected by the uncertainty of wave velocity in underwater environment.To solve this problem,an acoustic velocity-independent method is propos...The performance of conventional direction of arrival(DOA)method is greatly affected by the uncertainty of wave velocity in underwater environment.To solve this problem,an acoustic velocity-independent method is proposed to estimate the underwater DOA using two arbitrary intersecting uniform linear arrays in this study.By introducing the additional array compared to the conventional DOA methods,the proposed algorithm can make its performance independent of the acoustic velocity through the geometric relationship between those two arrays.The simulation results demonstrate that the proposed method is more accurate and robust than other methods in an unknown sound velocity.展开更多
基金Supported in part by the project of Science & Technology Department of Shanghai (05dz15004)
文摘Knowing the locations of nodes in wireless sensor networks (WSN) is essential for many applications. Nodes in a WSN can have multiple capabilities and exploiting one or more of the capabilities can help to solve the localization problem. In this paper, we assume that each node in a WSN has the capability of distance measurement and present a location computation technique called linear intersection for node localization. We also propose an applied localization model using linear intersection and do some concerned experiments to estimate the location computation algorithm.
基金This work was supported by National Natural Science Foundation of China(No.61871191)Natural Science Foundation of Guangdong Province(Nos.2016A020222003 and 2017A030313368)Science and Technology Planning Project of Guangzhou(No.201804010209).
文摘The performance of conventional direction of arrival(DOA)method is greatly affected by the uncertainty of wave velocity in underwater environment.To solve this problem,an acoustic velocity-independent method is proposed to estimate the underwater DOA using two arbitrary intersecting uniform linear arrays in this study.By introducing the additional array compared to the conventional DOA methods,the proposed algorithm can make its performance independent of the acoustic velocity through the geometric relationship between those two arrays.The simulation results demonstrate that the proposed method is more accurate and robust than other methods in an unknown sound velocity.