期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Calculation of Significant Wave Height Using the Linear Mean Square Estimation Method 被引量:2
1
作者 GAO Yangyang YU Dingyong +1 位作者 LI Cuilin XU Delun 《Journal of Ocean University of China》 SCIE CAS 2010年第4期327-332,共6页
Significant wave height is an important criterion in designing coastal and offshore structures.Based on the orthogonality principle, the linear mean square estimation method is applied to calculate significant wave he... Significant wave height is an important criterion in designing coastal and offshore structures.Based on the orthogonality principle, the linear mean square estimation method is applied to calculate significant wave height in this paper.Twenty-eight-year time series of wave data collected from three ocean buoys near San Francisco along the California coast are analyzed.It is proved theoretically that the computation error will be reduced by using as many measured data as possible for the calculation of significant wave height.Measured significant wave height at one buoy location is compared with the calculated value based on the data from two other adjacent buoys.The results indicate that the linear mean square estimation method can be well applied to the calculation and prediction of significant wave height in coastal regions. 展开更多
关键词 significant wave height linear mean square estimation method orthogonality principle
下载PDF
Low-complexity signal detection for massive MIMO systems via trace iterative method
2
作者 IMRAN A.Khoso ZHANG Xiaofei +2 位作者 ABDUL Hayee Shaikh IHSAN A.Khoso ZAHEER Ahmed Dayo 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第3期549-557,共9页
Linear minimum mean square error(MMSE)detection has been shown to achieve near-optimal performance for massive multiple-input multiple-output(MIMO)systems but inevitably involves complicated matrix inversion,which ent... Linear minimum mean square error(MMSE)detection has been shown to achieve near-optimal performance for massive multiple-input multiple-output(MIMO)systems but inevitably involves complicated matrix inversion,which entails high complexity.To avoid the exact matrix inversion,a considerable number of implicit and explicit approximate matrix inversion based detection methods is proposed.By combining the advantages of both the explicit and the implicit matrix inversion,this paper introduces a new low-complexity signal detection algorithm.Firstly,the relationship between implicit and explicit techniques is analyzed.Then,an enhanced Newton iteration method is introduced to realize an approximate MMSE detection for massive MIMO uplink systems.The proposed improved Newton iteration significantly reduces the complexity of conventional Newton iteration.However,its complexity is still high for higher iterations.Thus,it is applied only for first two iterations.For subsequent iterations,we propose a novel trace iterative method(TIM)based low-complexity algorithm,which has significantly lower complexity than higher Newton iterations.Convergence guarantees of the proposed detector are also provided.Numerical simulations verify that the proposed detector exhibits significant performance enhancement over recently reported iterative detectors and achieves close-to-MMSE performance while retaining the low-complexity advantage for systems with hundreds of antennas. 展开更多
关键词 signal detection LOW-COMPLEXITY linear minimum mean square error(MMSE) massive multiple-input multiple-output(MIMO) trace iterative method(TIM)
下载PDF
LOW COMPLEXITY LMMSE TURBO EQUALIZATION FOR COMBINED ERROR CONTROL CODED AND LINEARLY PRECODED OFDM
3
作者 Qu Daiming Zhu Guangxi 《Journal of Electronics(China)》 2006年第1期1-6,共6页
The turbo equalization approach is studied for Orthogonal Frequency Division Multiplexing (OFDM) system with combined error control coding and linear precoding. While previous literatures employed linear precodcr of... The turbo equalization approach is studied for Orthogonal Frequency Division Multiplexing (OFDM) system with combined error control coding and linear precoding. While previous literatures employed linear precodcr of small size for complexity reasons, this paper proposes to use a linear precoder of size larger than or equal to the maximum length of the equivalent discrete-time channel in order to achieve full frequency diversity and reduce complexities of the error control coder/decoder. Also a low complexity Linear Minimum Mean Square Error (LMMSE) turbo equalizer is derived for the receiver. Through simulation and performance analysis, it is shown that the performance of the proposed scheme over frequency selective fading channel reaches the matched filter bound; compared with the same coded OFDM without linear precoding, the proposed scheme shows an Signal-to-Noise Ratio (SNR) improvement of at least 6dB at a bit error rate of 10 6 over a multipath channel with exponential power delay profile. Convergence behavior of the proposed scheme with turbo equalization using various type of linear precoder/transformer, various interleaver size and error control coder of various constraint length is also investigated. 展开更多
关键词 Orthogonal Frequency Division Multiplexing (OFDM) linear precoding Turbo equalization linear Minimum mean Square Error (LMMSE)
下载PDF
Convolutional Neural Network Auto Encoder Channel Estimation Algorithm in MIMO-OFDM System 被引量:2
4
作者 I.Kalphana T.Kesavamurthy 《Computer Systems Science & Engineering》 SCIE EI 2022年第4期171-185,共15页
Higher transmission rate is one of the technological features of promi-nently used wireless communication namely Multiple Input Multiple Output-Orthogonal Frequency Division Multiplexing(MIMO–OFDM).One among an effec... Higher transmission rate is one of the technological features of promi-nently used wireless communication namely Multiple Input Multiple Output-Orthogonal Frequency Division Multiplexing(MIMO–OFDM).One among an effective solution for channel estimation in wireless communication system,spe-cifically in different environments is Deep Learning(DL)method.This research greatly utilizes channel estimator on the basis of Convolutional Neural Network Auto Encoder(CNNAE)classifier for MIMO-OFDM systems.A CNNAE classi-fier is one among Deep Learning(DL)algorithm,in which video signal is fed as input by allotting significant learnable weights and biases in various aspects/objects for video signal and capable of differentiating from one another.Improved performances are achieved by using CNNAE based channel estimation,in which extension is done for channel selection as well as achieve enhanced performances numerically,when compared with conventional estimators in quite a lot of scenar-ios.Considering reduction in number of parameters involved and re-usability of weights,CNNAE based channel estimation is quite suitable and properlyfits to the video signal.CNNAE classifier weights updation are done with minimized Sig-nal to Noise Ratio(SNR),Bit Error Rate(BER)and Mean Square Error(MSE). 展开更多
关键词 Deep learning channel estimation multiple input multiple output least square linear minimum mean square error and orthogonal frequency division multiplexing
下载PDF
LMMSE-based SAGE channel estimation and data detection joint algorithm for MIMO-OFDM system 被引量:1
5
作者 申京 Wu Muqing 《High Technology Letters》 EI CAS 2012年第2期195-201,共7页
A new channel estimation and data detection joint algorithm is proposed for multi-input multi-output (MIMO) - orthogonal frequency division multiplexing (OFDM) system using linear minimum mean square error (LMMSE... A new channel estimation and data detection joint algorithm is proposed for multi-input multi-output (MIMO) - orthogonal frequency division multiplexing (OFDM) system using linear minimum mean square error (LMMSE)- based space-alternating generalized expectation-maximization (SAGE) algorithm. In the proposed algorithm, every sub-frame of the MIMO-OFDM system is divided into some OFDM sub-blocks and the LMMSE-based SAGE algorithm in each sub-block is used. At the head of each sub-flame, we insert training symbols which are used in the initial estimation at the beginning. Channel estimation of the previous sub-block is applied to the initial estimation in the current sub-block by the maximum-likelihood (ML) detection to update channel estimatjon and data detection by iteration until converge. Then all the sub-blocks can be finished in turn. Simulation results show that the proposed algorithm can improve the bit error rate (BER) performance. 展开更多
关键词 multi-input multi-output (MIMO) orthogonal frequency division multiplexing (OFDM) linear minimum mean square error (LMMSE) space-alternating generalized expectation-maximization (SAGE) ITERATION channel estimation data detection joint algorithm.
下载PDF
Carrier frequency offset estimation for a generalized OFDMA uplink
6
作者 Zhang Wei Wang Jing Chen Xiang 《High Technology Letters》 EI CAS 2011年第4期333-338,共6页
A residual carrier frequency offset (CFO) estimation scheme is proposed for the uplink of orthogonal frequency division multiple access (OFDMA) systems. Multiple access interference caused by CFOs in the uplink is... A residual carrier frequency offset (CFO) estimation scheme is proposed for the uplink of orthogonal frequency division multiple access (OFDMA) systems. Multiple access interference caused by CFOs in the uplink is investigated, as it severely affects the performance of a classical maximum likelihood (ML) frequency estimator. By the use of the estimated CFOs of the active users, the linear maximum mean square error (LMMSE) equalization is performed before the ML frequency estimator for the interference cancellation, which can help to sufficiently improve the estimation accuracy for the residual CFO of the incoming user. Analysis and simulations show that the modified ML estimator provides a tradeoff between estimation accuracy and computational complexity caused by the LMMSE interference cancellation, and the proposed method allows OFDMA systems flexibly allocating subcarriers to users. 展开更多
关键词 OFDMA upliak frequency synchronization maximum likelihood (ML) frequency estimator linear minhnum mean square error (LMMSE) equalization generalized carrier-allocation scheme (GCAS)
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部