期刊文献+
共找到769篇文章
< 1 2 39 >
每页显示 20 50 100
Low Complexity Minimum Mean Square Error Channel Estimation for Adaptive Coding and Modulation Systems 被引量:2
1
作者 GUO Shuxia SONG Yang +1 位作者 GAO Ying HAN Qianjin 《China Communications》 SCIE CSCD 2014年第1期126-137,共12页
Performance of the Adaptive Coding and Modulation(ACM) strongly depends on the retrieved Channel State Information(CSI),which can be obtained using the channel estimation techniques relying on pilot symbol transmissio... Performance of the Adaptive Coding and Modulation(ACM) strongly depends on the retrieved Channel State Information(CSI),which can be obtained using the channel estimation techniques relying on pilot symbol transmission.Earlier analysis of methods of pilot-aided channel estimation for ACM systems were relatively little.In this paper,we investigate the performance of CSI prediction using the Minimum Mean Square Error(MMSE)channel estimator for an ACM system.To solve the two problems of MMSE:high computational operations and oversimplified assumption,we then propose the Low-Complexity schemes(LC-MMSE and Recursion LC-MMSE(R-LC-MMSE)).Computational complexity and Mean Square Error(MSE) are presented to evaluate the efficiency of the proposed algorithm.Both analysis and numerical results show that LC-MMSE performs close to the wellknown MMSE estimator with much lower complexity and R-LC-MMSE improves the application of MMSE estimation to specific circumstances. 展开更多
关键词 adaptive coding and modulation channel estimation minimum mean square error low-complexity minimum mean square error
下载PDF
LOW COMPLEXITY LMMSE TURBO EQUALIZATION FOR COMBINED ERROR CONTROL CODED AND LINEARLY PRECODED OFDM
2
作者 Qu Daiming Zhu Guangxi 《Journal of Electronics(China)》 2006年第1期1-6,共6页
The turbo equalization approach is studied for Orthogonal Frequency Division Multiplexing (OFDM) system with combined error control coding and linear precoding. While previous literatures employed linear precodcr of... The turbo equalization approach is studied for Orthogonal Frequency Division Multiplexing (OFDM) system with combined error control coding and linear precoding. While previous literatures employed linear precodcr of small size for complexity reasons, this paper proposes to use a linear precoder of size larger than or equal to the maximum length of the equivalent discrete-time channel in order to achieve full frequency diversity and reduce complexities of the error control coder/decoder. Also a low complexity Linear Minimum Mean Square Error (LMMSE) turbo equalizer is derived for the receiver. Through simulation and performance analysis, it is shown that the performance of the proposed scheme over frequency selective fading channel reaches the matched filter bound; compared with the same coded OFDM without linear precoding, the proposed scheme shows an Signal-to-Noise Ratio (SNR) improvement of at least 6dB at a bit error rate of 10 6 over a multipath channel with exponential power delay profile. Convergence behavior of the proposed scheme with turbo equalization using various type of linear precoder/transformer, various interleaver size and error control coder of various constraint length is also investigated. 展开更多
关键词 Orthogonal Frequency Division Multiplexing (OFDM) linear precoding Turbo equalization linear minimum mean Square error (LMMSE)
下载PDF
基于Fisher线性判别率的加权K-means聚类算法 被引量:5
3
作者 杨鹤标 薛艳锋 +2 位作者 冯进兰 沈项军 吴静丽 《计算机应用研究》 CSCD 北大核心 2010年第12期4439-4442,共4页
为提高K-means聚类效果,采用Fisher线性判别率的方法确定特征在聚类中的贡献度并依此对特征进行加权聚类。在人工和实际数据集上所做的实验表明,本方法在聚类效果上优于其他同类加权K-means聚类算法。
关键词 K-均值 聚类 Fisher线性判别率 特征加权 调整随机指标 类内错误率均方和
下载PDF
A New Class of Biased Linear Estimators in Deficient-rank Linear Models 被引量:1
4
作者 归庆明 段清堂 +1 位作者 周巧云 郭建锋 《Chinese Quarterly Journal of Mathematics》 CSCD 2001年第1期71-78,共8页
In this paper, we define a new class of biased linear estimators of the vector of unknown parameters in the deficient_rank linear model based on the spectral decomposition expression of the best linear minimun bias es... In this paper, we define a new class of biased linear estimators of the vector of unknown parameters in the deficient_rank linear model based on the spectral decomposition expression of the best linear minimun bias estimator. Some important properties are discussed. By appropriate choices of bias parameters, we construct many interested and useful biased linear estimators, which are the extension of ordinary biased linear estimators in the full_rank linear model to the deficient_rank linear model. At last, we give a numerical example in geodetic adjustment. 展开更多
关键词 deficient_rank model best linear minimum bias estimator generalized principal components estimator mean squared error condition number
下载PDF
Selection of the Linear Regression Model According to the Parameter Estimation 被引量:31
5
作者 Sun Dao-de Department of Computer, Fuyang Teachers College, Anhui 236032,China 《Wuhan University Journal of Natural Sciences》 EI CAS 2000年第4期400-405,共6页
In this paper, based on the theory of parameter estimation, we give a selection method and, in a sense of a good character of the parameter estimation, we think that it is very reasonable. Moreover, we offer a calcula... In this paper, based on the theory of parameter estimation, we give a selection method and, in a sense of a good character of the parameter estimation, we think that it is very reasonable. Moreover, we offer a calculation method of selection statistic and an applied example. 展开更多
关键词 parameter estimation linear regression model selection criterion mean square error
下载PDF
THE SUPERIORITY OF EMPIRICAL BAYES ESTIMATION OF PARAMETERS IN PARTITIONED NORMAL LINEAR MODEL 被引量:4
6
作者 张伟平 韦来生 《Acta Mathematica Scientia》 SCIE CSCD 2008年第4期955-962,共8页
In this article,the empirical Bayes(EB)estimators are constructed for the estimable functions of the parameters in partitioned normal linear model.The superiorities of the EB estimators over ordinary least-squares... In this article,the empirical Bayes(EB)estimators are constructed for the estimable functions of the parameters in partitioned normal linear model.The superiorities of the EB estimators over ordinary least-squares(LS)estimator are investigated under mean square error matrix(MSEM)criterion. 展开更多
关键词 Partitioned linear model empirical Bayes estimator least-squares estimator mean square error matrix
下载PDF
Application of Unscented Transformation for Nonlinear State Smoothing 被引量:6
7
作者 WANG Xiao-Xu PAN Quan +1 位作者 LIANG Yan ZHAO Chun-Hui 《自动化学报》 EI CSCD 北大核心 2012年第7期1107-1112,共6页
关键词 非线性状态 最优平滑 UT变换 应用 最小均方误差 KALMAN 离散系统 状态估计
下载PDF
Sequential nonlinear tracking filter without requirement of measurement decorrelation
8
作者 Gongjian Zhou Junhao Xie +1 位作者 Rongqing Xu Taifan Quan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第6期1135-1141,共7页
Sequential measurement processing is of benefit to both estimation accuracy and computational efficiency. When the noises are correlated across the measurement components, decorrelation based on covariance matrix fact... Sequential measurement processing is of benefit to both estimation accuracy and computational efficiency. When the noises are correlated across the measurement components, decorrelation based on covariance matrix factorization is required in the previous methods in order to perform sequential updates properly. A new sequential processing method, which carries out the sequential updates directly using the correlated measurement components, is proposed. And a typical sequential processing example is investigated, where the converted position measure- ments are used to estimate target states by standard Kalman filtering equations and the converted Doppler measurements are then incorporated into a minimum mean squared error (MMSE) estimator with the updated cross-covariance involved to account for the correlated errors. Numerical simulations demonstrate the superiority of the proposed new sequential processing in terms of better accuracy and consistency than the conventional sequential filter based on measurement decorrelation. 展开更多
关键词 sequential filter Doppler measurement measurementdecorrelation minimum mean squared error (MMSE).
下载PDF
Receding horizon H_∞ control for discrete-time Markovian jump linear systems
9
作者 Jiwei Wen Fei Liu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2011年第2期292-299,共8页
Receding horizon H∞ control scheme which can deal with both the H∞ disturbance attenuation and mean square stability is proposed for a class of discrete-time Markovian jump linear systems when minimizing a given qua... Receding horizon H∞ control scheme which can deal with both the H∞ disturbance attenuation and mean square stability is proposed for a class of discrete-time Markovian jump linear systems when minimizing a given quadratic performance criteria. First, a control law is established for jump systems based on pontryagin’s minimum principle and it can be constructed through numerical solution of iterative equations. The aim of this control strategy is to obtain an optimal control which can minimize the cost function under the worst disturbance at every sampling time. Due to the difficulty of the assurance of stability, then the above mentioned approach is improved by determining terminal weighting matrix which satisfies cost monotonicity condition. The control move which is calculated by using this type of terminal weighting matrix as boundary condition naturally guarantees the mean square stability of the closed-loop system. A sufficient condition for the existence of the terminal weighting matrix is presented in linear matrix inequality (LMI) form which can be solved efficiently by available software toolbox. Finally, a numerical example is given to illustrate the feasibility and effectiveness of the proposed method. 展开更多
关键词 Marker jump linear systems receding horizon H∞ control mean square stability terminal weighting matrix pontrya-gin's minimum principle current time jump mode.
下载PDF
THE COMPRESSION LS ESTIMATE OF REGRESSION COEFFICIENT IN MULTIVARIATE LINEAR MODEL
10
作者 陈世基 曾志斌 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1994年第4期379-388,共10页
In this paper, compression LS estimate (k) of the regression coefficient B isconsidered when the design matrix present ill-condition in multivariate linear model.The MSE (mean square error)of the estimate(k)=Ve... In this paper, compression LS estimate (k) of the regression coefficient B isconsidered when the design matrix present ill-condition in multivariate linear model.The MSE (mean square error)of the estimate(k)=Vec( (k))is less than theMSE of LS estimate β ̄* of the regression coefficient β= Vec(B) by choosing the pa-rameter k. Admissibility , numerical stability and relative efficiency of (k)are proved. The method of determining k value for practical use is also suggested 展开更多
关键词 multivariate linear model. least square estimate compression LSestimate mean square error
下载PDF
Revisiting Akaike’s Final Prediction Error and the Generalized Cross Validation Criteria in Regression from the Same Perspective: From Least Squares to Ridge Regression and Smoothing Splines
11
作者 Jean Raphael Ndzinga Mvondo Eugène-Patrice Ndong Nguéma 《Open Journal of Statistics》 2023年第5期694-716,共23页
In regression, despite being both aimed at estimating the Mean Squared Prediction Error (MSPE), Akaike’s Final Prediction Error (FPE) and the Generalized Cross Validation (GCV) selection criteria are usually derived ... In regression, despite being both aimed at estimating the Mean Squared Prediction Error (MSPE), Akaike’s Final Prediction Error (FPE) and the Generalized Cross Validation (GCV) selection criteria are usually derived from two quite different perspectives. Here, settling on the most commonly accepted definition of the MSPE as the expectation of the squared prediction error loss, we provide theoretical expressions for it, valid for any linear model (LM) fitter, be it under random or non random designs. Specializing these MSPE expressions for each of them, we are able to derive closed formulas of the MSPE for some of the most popular LM fitters: Ordinary Least Squares (OLS), with or without a full column rank design matrix;Ordinary and Generalized Ridge regression, the latter embedding smoothing splines fitting. For each of these LM fitters, we then deduce a computable estimate of the MSPE which turns out to coincide with Akaike’s FPE. Using a slight variation, we similarly get a class of MSPE estimates coinciding with the classical GCV formula for those same LM fitters. 展开更多
关键词 linear Model mean squared Prediction error Final Prediction error Generalized Cross Validation Least Squares Ridge Regression
下载PDF
Discriminant Analysis of the Linear Separable Data - Japanese 44 Cars
12
作者 Shuichi Shinmura 《Journal of Statistical Science and Application》 2016年第4期165-178,共14页
There are four serious problems in the discriminant analysis. We developed an optimal linear discriminant function (optimal LDF) based on the minimum number of misclassification (minimum NM) using integer programm... There are four serious problems in the discriminant analysis. We developed an optimal linear discriminant function (optimal LDF) based on the minimum number of misclassification (minimum NM) using integer programming (IP). We call this LDF as Revised IP-OLDF. Only this LDF can discriminate the cases on the discriminant hyperplane (Probleml). This LDF and a hard-margin SVM (H-SVM) can discriminate the lineary separable data (LSD) exactly. Another LDFs may not discriminate the LSD theoretically (Problem2). When Revised IP-OLDF discriminate the Swiss banknote data with six variables, we find MNM of two-variables model such as (X4, X6) is zero. Because MNMk decreases monotounusly (MNMk 〉= MNM(k+1)), sixteen MNMs including (X4, X6) are zero. Until now, because there is no research of the LSD, we surveyed another three linear separable data sets such as: 18 exam scores data sets, the Japanese 44 cars data and six microarray datasets. When we discriminate the exam scores with MNM=0, we find the generalized inverse matrix technique causes the serious Problem3 and confirmed this fact by the cars data. At last, we claim the discriminant analysis is not the inferential statistics because there is no standard errors (SEs) of error rates and discriminant coefficients (Problem4). Therefore, we poroposed the "100-fold cross validation for the small sample" method (the method). By this break-through, we can choose the best model having minimum mean of error rate (M2) in the validation sample and obtaine two 95% confidence intervals (CIs) of error rate and discriminant coefficients. When we discriminate the exam scores by this new method, we obtaine the surprising results seven LDFs except for Fisher's LDF are almost the same as the trivial LDFs. In this research, we discriminate the Japanese 44 cars data because we can discuss four problems. There are six independent variables to discriminate 29 regular cars and 15 small cars. This data is linear separable by the emission rate (X1) and the number of seats (X3). We examine the validity of the new model selection procedure of the discriminant analysis. We proposed the model with minimum mean of error rates (M2) in the validation samples is the best model. We had examined this procedure by the exam scores, and we obtain good results. Moreover, the 95% CI of eight LDFs offers us real perception of the discriminant theory. However, the exam scores are different from the ordinal data. Therefore, we apply our theory and procedure to the Japanese 44 cars data and confirmed the same conclution. 展开更多
关键词 Model Selection Procedure means of error Rates Fisher's LDF Logistic Regression Support VectorMachine (SVM) minimum Number of Misclassifications minimum NM MNM) Revised IP-OLDF based onMNM criterion Revised IPLP-OLDF Revised LP-OLDF linear Separable Data and Model K-fold Crossvalidation.
下载PDF
OFDM系统中一种A-MMSE信道估计算法
13
作者 叶文伟 《半导体光电》 CAS 北大核心 2024年第2期308-312,共5页
针对正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)系统中最小均方误差(Minimum Mean Squared Error,MMSE)信道估计算法误码率(BER)高的问题,提出一种平均最小均方误差(Averaged-Minimum Mean Squared Error,A-MMSE)... 针对正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)系统中最小均方误差(Minimum Mean Squared Error,MMSE)信道估计算法误码率(BER)高的问题,提出一种平均最小均方误差(Averaged-Minimum Mean Squared Error,A-MMSE)信道估计算法。该算法首先基于802.11n标准而构造了一种新的导频结构,收发两端分别进行降采样和过采样处理,利用已知训练序列和导频获得信道频域响应。仿真结果表明,所提出的A-MMSE信道估计算法与传统的MMSE算法相比,在BER为10^(-3)时,信噪比改善了约8dB。因而所提出的信道估计算法能明显改善系统的BER性能。 展开更多
关键词 正交频分复用系统 导频 最小均方误差 误码率
下载PDF
非均匀网络中半径可调的ARDV-Hop定位算法
14
作者 马千里 钱惠梦 +1 位作者 张琦 齐鑫 《传感技术学报》 CAS CSCD 北大核心 2024年第9期1613-1621,共9页
针对无线传感网络中传统DV-Hop(Distance Vector Hop)定位算法节点分布不均匀导致定位误差较大的问题,提出了非均匀网络中半径可调的ARDV-Hop(Adjustable Radius DV-Hop in Non-uniform Networks)定位算法。该算法通过半径可调的方式对... 针对无线传感网络中传统DV-Hop(Distance Vector Hop)定位算法节点分布不均匀导致定位误差较大的问题,提出了非均匀网络中半径可调的ARDV-Hop(Adjustable Radius DV-Hop in Non-uniform Networks)定位算法。该算法通过半径可调的方式对节点间的跳数进行细化,用细化后呈小数级的跳数代替传统的整数级跳数,并建立了数据能量消耗模型,优化了网络传输性能。ARDV-Hop算法还针对节点分布不均匀的区域提出跳距优化算法:在节点密度大的区域,采用余弦定理优化跳距;密度小的区域,采用最小均方误差(Least Mean Square,LMS)来修正跳距。仿真实验表明,在同等网络环境下,与传统DV-Hop算法、GDV-Hop算法和WOA-DV-Hop算法相比,ARDV-Hop算法能更有效地降低定位误差. 展开更多
关键词 无线传感网络 DV-HOP 半径可调 非均匀网络 最小均方误差
下载PDF
面向高速移动环境的二级信号检测算法
15
作者 王华华 张旭 李峰 《计算机应用》 CSCD 北大核心 2024年第4期1236-1241,共6页
正交时间序列复用(OTSM)可以以更低的复杂度实现类似正交时频空间(OTFS)调制的传输性能,为未来需要低复杂度收发器的高速移动性通信系统提供一种有前景的解决方法。针对现有的基于时域的高斯-赛德尔(GS)迭代均衡效率不高的问题,提出二... 正交时间序列复用(OTSM)可以以更低的复杂度实现类似正交时频空间(OTFS)调制的传输性能,为未来需要低复杂度收发器的高速移动性通信系统提供一种有前景的解决方法。针对现有的基于时域的高斯-赛德尔(GS)迭代均衡效率不高的问题,提出二级信号检测算法。首先在时域进行低复杂度线性最小均方误差(LMMSE)检测,其次采用连续超松弛(SOR)迭代算法进一步消除残余符号干扰。为进一步提高收敛效率和检测性能,对SOR算法进行线性优化得到改进SOR(ISOR)算法。仿真实验结果表明,与SOR算法相比,ISOR算法在增加较低复杂度前提下可以提升检测性能并加快算法收敛。与GS迭代算法相比,ISOR算法采用16QAM调制且误码率为10-4时有1.61 dB的增益。 展开更多
关键词 正交时间序列复用 正交时频空间调制 连续超松弛 信号检测 线性最小均方误差 符号干扰
下载PDF
SC-FDMA系统的MMSE-FSE算法分析
16
作者 孙亮亮 任颖 《计算机与网络》 2024年第1期89-94,共6页
单载波频分多址(Single-Carrier Frequency Division Multiple Access,SC-FDMA)系统均衡器的输入信号通常是按符号间隔进行采样的,其对抽样时间十分敏感。在短波波段,由于多径反射显著,当多径延时接近符号周期长度时,对抽样时间敏感的... 单载波频分多址(Single-Carrier Frequency Division Multiple Access,SC-FDMA)系统均衡器的输入信号通常是按符号间隔进行采样的,其对抽样时间十分敏感。在短波波段,由于多径反射显著,当多径延时接近符号周期长度时,对抽样时间敏感的缺点会被放大。针对短波信道的特征,研究了SC-FDMA系统的分数间隔均衡器(Fractional Spaced Equalizer,FSE)模型,通过与符号间隔均衡器对比发现,虽然符号间隔均衡器可以补偿接收信号的频率响应,但其对短时延衰落信道的补偿效果较差;FSE对于抽样时间的选择不敏感,在多径信道下能够获得更好的性能。链路仿真结果表明,在短时衰落信道环境下,FSE的译码性能比符号间隔均衡器有最大1.5 dB的增益。 展开更多
关键词 无线通信 多径信道 单载波频分多址 分数间隔均衡器 最小均方误差
下载PDF
基于SimAM注意力机制的轴承故障迁移诊断模型 被引量:1
17
作者 包从望 朱广勇 +1 位作者 邹旺 郭灏 《机电工程》 CAS 北大核心 2024年第5期862-869,893,共9页
针对轴承故障在跨工况迁移诊断时,其域不变特征难以提取,易出现模型过拟合这一问题,提出了一种基于无参数注意力模块(SimAM)的轴承故障迁移诊断方法。首先,以一维卷积神经网络作为基本框架,利用自适应批量归一化(AdaBN)对各输出层进行... 针对轴承故障在跨工况迁移诊断时,其域不变特征难以提取,易出现模型过拟合这一问题,提出了一种基于无参数注意力模块(SimAM)的轴承故障迁移诊断方法。首先,以一维卷积神经网络作为基本框架,利用自适应批量归一化(AdaBN)对各输出层进行了归一化处理,经两层卷积层和两层池化层后,对输出特征进行了随机节点失活操作;然后,利用改进后的参数化修正线性单元(PReLU)激活函数自适应提取负值输入权值系数,分别以交叉熵损失函数监督训练有标签的源域数据,以均方对数误差(MSLE)作为损失函数训练无标签的目标数据;最后,利用自制实验台数据和凯斯西储轴承公开数据对模型进行了验证,分别以不同的单一工况作为源域,其余工况作为目标域进行了迁移诊断任务研究。研究结果表明:基于SimAM的轴承故障迁移诊断方具有较好的域不变特征提取的性能,且所提特征具有较好的聚类效果;自制实验台中的平均迁移精度在89.1%以上,最高均值可达97.85%,CWRU数据集中的平均迁移精度达98.68%。该成果可为后续轴承故障由实验向工业现场的迁移诊断奠定基础。 展开更多
关键词 轴承故障诊断 迁移学习 无参数注意力机制 自适应批量归一化 参数化修正线性单元 均方对数误差 卷积神经网络
下载PDF
基于SDW-MMSE的广义特征值稳健波束形成方法
18
作者 李海龙 杨飞 +1 位作者 杨诗童 路晓庆 《数据采集与处理》 CSCD 北大核心 2024年第3期649-658,共10页
最大输出信噪比(Signal-to-noise ratio,SNR)准则下,广义特征值(Generalized eigenvalue,GEV)波束形成存在复系数难以控制的问题,在复杂的声学环境中容易导致输出信号严重失真。针对复系数估计问题,本文提出一种基于最小均方误差(Minimu... 最大输出信噪比(Signal-to-noise ratio,SNR)准则下,广义特征值(Generalized eigenvalue,GEV)波束形成存在复系数难以控制的问题,在复杂的声学环境中容易导致输出信号严重失真。针对复系数估计问题,本文提出一种基于最小均方误差(Minimum mean square error,MMSE)的复系数估计方法,并通过引入语音失真权重因子(Speech distortion weight,SDW),调节降噪效果和语音失真之间的权重关系,进而提出了基于SDW-MMSE的广义特征值稳健波束形成方法。通过最大似然法估计目标信号和噪音信号的功率谱,进而求解主广义特征向量。进一步基于SDW-MMSE估计复系数,将复系数与主广义特征向量相结合,从而得到基于SDW-MMSE的广义特征值稳健波束形成滤波向量。仿真实验结果表明,本文提出的波束形成方法可有效消除相干噪声和非相干噪声,具有输出信噪比高、语音失真少等稳健性能。 展开更多
关键词 语音增强 广义特征值波束形成 最小均方误差 语音失真权重 最大似然参数估计
下载PDF
一种基于ASLC的数字波束抗干扰改进算法研究
19
作者 赵楠 韩国栋 张建超 《现代雷达》 CSCD 北大核心 2024年第6期74-78,共5页
针对阵列雷达系统在自适应抗干扰处理过程中设备复杂度高、期望信号信噪比下降等问题,在自适应旁瓣对消(ASLC)理论基础上,研究了一种改进的数字抗干扰处理算法。该算法分析了辅助天线单元独立设计引起的空间资源占用等问题,通过在天线... 针对阵列雷达系统在自适应抗干扰处理过程中设备复杂度高、期望信号信噪比下降等问题,在自适应旁瓣对消(ASLC)理论基础上,研究了一种改进的数字抗干扰处理算法。该算法分析了辅助天线单元独立设计引起的空间资源占用等问题,通过在天线阵列中灵活选取数字单元形成辅助信号的方式,优化阵列资源的同时增加了主阵列与辅助单元收到的干扰信号相关性,提高了系统的干扰抑制比;根据最小均方误差准则对辅助信号进行预加权处理,削减辅助波束接收的期望信号能量,改善了由于辅助波束接收信号的自相关矩阵中含有期望信号引起的期望信号相消问题。通过系统测试,验证了该技术的有效性,实测结果表明,该算法在简化天线阵列设计的同时,干扰调零深度达到了51.6 dB,而期望信号信噪比仅损失0.65 dB,解决了传统ASLC算法效率下降的难题,具有广泛的工程应用前景。 展开更多
关键词 最小均方误差 自适应旁瓣对消 数字波束抗干扰
下载PDF
STAR-RIS辅助ISAC系统波束赋形优化方法
20
作者 朱小双 傅友华 《小型微型计算机系统》 CSCD 北大核心 2024年第9期2244-2252,共9页
本文提出了将通信感知一体化(Integrated Sensing and Communication,ISAC)系统与同时透射和反射可重构智能表面(Simultaneously Transmitting and Reflecting Reconfigurable Intelligent Surfaces,STAR-RIS)相结合的系统模型,解决了... 本文提出了将通信感知一体化(Integrated Sensing and Communication,ISAC)系统与同时透射和反射可重构智能表面(Simultaneously Transmitting and Reflecting Reconfigurable Intelligent Surfaces,STAR-RIS)相结合的系统模型,解决了传统可重构智能表面RIS不能实现全空间通信与感知的问题;同时考虑在STAR-RIS上安装低成本的专用传感器以实现ISAC系统在STAR-RIS上执行目标感知的一种新颖有源架构,解决了雷达感知的严重路径损耗问题.本文旨在联合优化ISAC基站处的波束赋形和STAR-RIS的无源波束赋形,以最大化通信用户的加权和速率(Weighted Sum Rate,WSR),同时保证感知性能的最低信噪比(signal-to-noise ratio,SNR).为了解决该复杂非凸优化问题,交替优化基站波束赋形及STAR-RIS无源波束赋形.针对所提的满足雷达感知SNR最低要求下最大化WSR问题,基站处波束赋形的优化子问题等价为加权最小均方误差(Weighted Minimum Mean Square Error,WMMSE)问题,STAR-RIS处无源波束赋形优化子问题等价为分式规划(Fractional Programming,FP)问题.进一步,分别将优化的非凸子问题转化为二次约束二次规划(Quadratic Constraint Quadratic Programming,QCQP),并使用半正定松弛(Semidefinite Relaxation,SDR)技术将它们分别转化为凸的半正定规划(Semidefinite Programming,SDP)子问题进行迭代求解.仿真结果验证了所采用新型STAR-RIS辅助ISAC方案的优点和所提算法在提高WSR性能上的有效性. 展开更多
关键词 通信感知一体化 同时透射和反射可重构智能表面 波束赋形 加权最小均方误差 分式规划
下载PDF
上一页 1 2 39 下一页 到第
使用帮助 返回顶部