The turbo equalization approach is studied for Orthogonal Frequency Division Multiplexing (OFDM) system with combined error control coding and linear precoding. While previous literatures employed linear precodcr of...The turbo equalization approach is studied for Orthogonal Frequency Division Multiplexing (OFDM) system with combined error control coding and linear precoding. While previous literatures employed linear precodcr of small size for complexity reasons, this paper proposes to use a linear precoder of size larger than or equal to the maximum length of the equivalent discrete-time channel in order to achieve full frequency diversity and reduce complexities of the error control coder/decoder. Also a low complexity Linear Minimum Mean Square Error (LMMSE) turbo equalizer is derived for the receiver. Through simulation and performance analysis, it is shown that the performance of the proposed scheme over frequency selective fading channel reaches the matched filter bound; compared with the same coded OFDM without linear precoding, the proposed scheme shows an Signal-to-Noise Ratio (SNR) improvement of at least 6dB at a bit error rate of 10 6 over a multipath channel with exponential power delay profile. Convergence behavior of the proposed scheme with turbo equalization using various type of linear precoder/transformer, various interleaver size and error control coder of various constraint length is also investigated.展开更多
The evaluation of the minimum distance of linear block codes remains an open problem in coding theory, and it is not easy to determine its true value by classical methods, for this reason the problem has been solved i...The evaluation of the minimum distance of linear block codes remains an open problem in coding theory, and it is not easy to determine its true value by classical methods, for this reason the problem has been solved in the literature with heuristic techniques such as genetic algorithms and local search algorithms. In this paper we propose two approaches to attack the hardness of this problem. The first approach is based on genetic algorithms and it yield to good results comparing to another work based also on genetic algorithms. The second approach is based on a new randomized algorithm which we call 'Multiple Impulse Method (MIM)', where the principle is to search codewords locally around the all-zero codeword perturbed by a minimum level of noise, anticipating that the resultant nearest nonzero codewords will most likely contain the minimum Hamming-weight codeword whose Hamming weight is equal to the minimum distance of the linear code.展开更多
In this paper, we define a new class of biased linear estimators of the vector of unknown parameters in the deficient_rank linear model based on the spectral decomposition expression of the best linear minimun bias es...In this paper, we define a new class of biased linear estimators of the vector of unknown parameters in the deficient_rank linear model based on the spectral decomposition expression of the best linear minimun bias estimator. Some important properties are discussed. By appropriate choices of bias parameters, we construct many interested and useful biased linear estimators, which are the extension of ordinary biased linear estimators in the full_rank linear model to the deficient_rank linear model. At last, we give a numerical example in geodetic adjustment.展开更多
The theoretical lower bounds on mean squared channel estimation errors for typical fading channels are presented by the infinite-length and non-causal Wiener filter and the exact closed-form expressions of the lower b...The theoretical lower bounds on mean squared channel estimation errors for typical fading channels are presented by the infinite-length and non-causal Wiener filter and the exact closed-form expressions of the lower bounds for different channel Doppler spectra are derived. Based on the obtained lower bounds on mean squared channel estimation errors, the limits on bit error rate (BER) for maximal ratio combining (MRC) with Gaussian distributed weighting errors on independent and identically distributed (i. i. d) fading channels are presented. Numerical results show that the BER performances of ideal MRC are the lower bounds on the BER performances of non-ideal MRC and deteriorate as the maximum Doppler frequency increases or the SNR of channel estimate decreases.展开更多
Linear minimum mean square error(MMSE)detection has been shown to achieve near-optimal performance for massive multiple-input multiple-output(MIMO)systems but inevitably involves complicated matrix inversion,which ent...Linear minimum mean square error(MMSE)detection has been shown to achieve near-optimal performance for massive multiple-input multiple-output(MIMO)systems but inevitably involves complicated matrix inversion,which entails high complexity.To avoid the exact matrix inversion,a considerable number of implicit and explicit approximate matrix inversion based detection methods is proposed.By combining the advantages of both the explicit and the implicit matrix inversion,this paper introduces a new low-complexity signal detection algorithm.Firstly,the relationship between implicit and explicit techniques is analyzed.Then,an enhanced Newton iteration method is introduced to realize an approximate MMSE detection for massive MIMO uplink systems.The proposed improved Newton iteration significantly reduces the complexity of conventional Newton iteration.However,its complexity is still high for higher iterations.Thus,it is applied only for first two iterations.For subsequent iterations,we propose a novel trace iterative method(TIM)based low-complexity algorithm,which has significantly lower complexity than higher Newton iterations.Convergence guarantees of the proposed detector are also provided.Numerical simulations verify that the proposed detector exhibits significant performance enhancement over recently reported iterative detectors and achieves close-to-MMSE performance while retaining the low-complexity advantage for systems with hundreds of antennas.展开更多
The L<sub>1</sub> regression is a robust alternative to the least squares regression whenever there are outliers in the values of the response variable, or the errors follow a long-tailed distribution. To ...The L<sub>1</sub> regression is a robust alternative to the least squares regression whenever there are outliers in the values of the response variable, or the errors follow a long-tailed distribution. To calculate the standard errors of the L<sub>1</sub> estimators, construct confidence intervals and test hypotheses about the parameters of the model, or to calculate a robust coefficient of determination, it is necessary to have an estimate of a scale parameterτ. This parameter is such that τ<sup>2</sup>/n is the variance of the median of a sample of size n from the errors distribution. [1] proposed the use of , a consistent, and so, an asymptotically unbiased estimator of τ. However, this estimator is not stable in small samples, in the sense that it can increase with the introduction of new independent variables in the model. When the errors follow the Laplace distribution, the maximum likelihood estimator of τ, say , is the mean absolute error, that is, the mean of the absolute residuals. This estimator always decreases when new independent variables are added to the model. Our objective is to develop asymptotic properties of under several errors distributions analytically. We also performed a simulation study to compare the distributions of both estimators in small samples with the objective to establish conditions in which is a good alternative to for such situations.展开更多
There are four serious problems in the discriminant analysis. We developed an optimal linear discriminant function (optimal LDF) based on the minimum number of misclassification (minimum NM) using integer programm...There are four serious problems in the discriminant analysis. We developed an optimal linear discriminant function (optimal LDF) based on the minimum number of misclassification (minimum NM) using integer programming (IP). We call this LDF as Revised IP-OLDF. Only this LDF can discriminate the cases on the discriminant hyperplane (Probleml). This LDF and a hard-margin SVM (H-SVM) can discriminate the lineary separable data (LSD) exactly. Another LDFs may not discriminate the LSD theoretically (Problem2). When Revised IP-OLDF discriminate the Swiss banknote data with six variables, we find MNM of two-variables model such as (X4, X6) is zero. Because MNMk decreases monotounusly (MNMk 〉= MNM(k+1)), sixteen MNMs including (X4, X6) are zero. Until now, because there is no research of the LSD, we surveyed another three linear separable data sets such as: 18 exam scores data sets, the Japanese 44 cars data and six microarray datasets. When we discriminate the exam scores with MNM=0, we find the generalized inverse matrix technique causes the serious Problem3 and confirmed this fact by the cars data. At last, we claim the discriminant analysis is not the inferential statistics because there is no standard errors (SEs) of error rates and discriminant coefficients (Problem4). Therefore, we poroposed the "100-fold cross validation for the small sample" method (the method). By this break-through, we can choose the best model having minimum mean of error rate (M2) in the validation sample and obtaine two 95% confidence intervals (CIs) of error rate and discriminant coefficients. When we discriminate the exam scores by this new method, we obtaine the surprising results seven LDFs except for Fisher's LDF are almost the same as the trivial LDFs. In this research, we discriminate the Japanese 44 cars data because we can discuss four problems. There are six independent variables to discriminate 29 regular cars and 15 small cars. This data is linear separable by the emission rate (X1) and the number of seats (X3). We examine the validity of the new model selection procedure of the discriminant analysis. We proposed the model with minimum mean of error rates (M2) in the validation samples is the best model. We had examined this procedure by the exam scores, and we obtain good results. Moreover, the 95% CI of eight LDFs offers us real perception of the discriminant theory. However, the exam scores are different from the ordinal data. Therefore, we apply our theory and procedure to the Japanese 44 cars data and confirmed the same conclution.展开更多
A Taylor series expansion(TSE) based design for minimum mean-square error(MMSE) and QR decomposition(QRD) of multi-input and multi-output(MIMO) systems is proposed based on application specific instruction set process...A Taylor series expansion(TSE) based design for minimum mean-square error(MMSE) and QR decomposition(QRD) of multi-input and multi-output(MIMO) systems is proposed based on application specific instruction set processor(ASIP), which uses TSE algorithm instead of resource-consuming reciprocal and reciprocal square root(RSR) operations.The aim is to give a high performance implementation for MMSE and QRD in one programmable platform simultaneously.Furthermore, instruction set architecture(ISA) and the allocation of data paths in single instruction multiple data-very long instruction word(SIMD-VLIW) architecture are provided, offering more data parallelism and instruction parallelism for different dimension matrices and operation types.Meanwhile, multiple level numerical precision can be achieved with flexible table size and expansion order in TSE ISA.The ASIP has been implemented to a 28 nm CMOS process and frequency reaches 800 MHz.Experimental results show that the proposed design provides perfect numerical precision within the fixed bit-width of the ASIP, higher matrix processing rate better than the requirements of 5G system and more rate-area efficiency comparable with ASIC implementations.展开更多
为了减小到达时间差(time difference of arrival,TDOA)方法在定位过程中存在的系统测量噪声和非视距误差,提出了一种基于最优线性无偏估计的TDOA定位算法。该方法首先利用Chan算法计算定位初始位置,在初始位置处泰勒级数展开得到位置...为了减小到达时间差(time difference of arrival,TDOA)方法在定位过程中存在的系统测量噪声和非视距误差,提出了一种基于最优线性无偏估计的TDOA定位算法。该方法首先利用Chan算法计算定位初始位置,在初始位置处泰勒级数展开得到位置估计量的线性模型,并求取误差加权矩阵、系数矩阵及协方差矩阵等参数;然后采用加权最小二乘法对最终位置进行最优无偏估计,同时推导出定位误差的最小方差阵。仿真实验结果表明,在相同环境下该算法的定位精度优于Chan和Taylor算法,同时显著减小了算法的运算量。展开更多
基金Supported by the National High Technology ResearchDevelopment Program of China (863 Program)(No.2001AA 123014)
文摘The turbo equalization approach is studied for Orthogonal Frequency Division Multiplexing (OFDM) system with combined error control coding and linear precoding. While previous literatures employed linear precodcr of small size for complexity reasons, this paper proposes to use a linear precoder of size larger than or equal to the maximum length of the equivalent discrete-time channel in order to achieve full frequency diversity and reduce complexities of the error control coder/decoder. Also a low complexity Linear Minimum Mean Square Error (LMMSE) turbo equalizer is derived for the receiver. Through simulation and performance analysis, it is shown that the performance of the proposed scheme over frequency selective fading channel reaches the matched filter bound; compared with the same coded OFDM without linear precoding, the proposed scheme shows an Signal-to-Noise Ratio (SNR) improvement of at least 6dB at a bit error rate of 10 6 over a multipath channel with exponential power delay profile. Convergence behavior of the proposed scheme with turbo equalization using various type of linear precoder/transformer, various interleaver size and error control coder of various constraint length is also investigated.
文摘The evaluation of the minimum distance of linear block codes remains an open problem in coding theory, and it is not easy to determine its true value by classical methods, for this reason the problem has been solved in the literature with heuristic techniques such as genetic algorithms and local search algorithms. In this paper we propose two approaches to attack the hardness of this problem. The first approach is based on genetic algorithms and it yield to good results comparing to another work based also on genetic algorithms. The second approach is based on a new randomized algorithm which we call 'Multiple Impulse Method (MIM)', where the principle is to search codewords locally around the all-zero codeword perturbed by a minimum level of noise, anticipating that the resultant nearest nonzero codewords will most likely contain the minimum Hamming-weight codeword whose Hamming weight is equal to the minimum distance of the linear code.
文摘In this paper, we define a new class of biased linear estimators of the vector of unknown parameters in the deficient_rank linear model based on the spectral decomposition expression of the best linear minimun bias estimator. Some important properties are discussed. By appropriate choices of bias parameters, we construct many interested and useful biased linear estimators, which are the extension of ordinary biased linear estimators in the full_rank linear model to the deficient_rank linear model. At last, we give a numerical example in geodetic adjustment.
文摘The theoretical lower bounds on mean squared channel estimation errors for typical fading channels are presented by the infinite-length and non-causal Wiener filter and the exact closed-form expressions of the lower bounds for different channel Doppler spectra are derived. Based on the obtained lower bounds on mean squared channel estimation errors, the limits on bit error rate (BER) for maximal ratio combining (MRC) with Gaussian distributed weighting errors on independent and identically distributed (i. i. d) fading channels are presented. Numerical results show that the BER performances of ideal MRC are the lower bounds on the BER performances of non-ideal MRC and deteriorate as the maximum Doppler frequency increases or the SNR of channel estimate decreases.
基金supported by National Natural Science Foundation of China(62371225,62371227)。
文摘Linear minimum mean square error(MMSE)detection has been shown to achieve near-optimal performance for massive multiple-input multiple-output(MIMO)systems but inevitably involves complicated matrix inversion,which entails high complexity.To avoid the exact matrix inversion,a considerable number of implicit and explicit approximate matrix inversion based detection methods is proposed.By combining the advantages of both the explicit and the implicit matrix inversion,this paper introduces a new low-complexity signal detection algorithm.Firstly,the relationship between implicit and explicit techniques is analyzed.Then,an enhanced Newton iteration method is introduced to realize an approximate MMSE detection for massive MIMO uplink systems.The proposed improved Newton iteration significantly reduces the complexity of conventional Newton iteration.However,its complexity is still high for higher iterations.Thus,it is applied only for first two iterations.For subsequent iterations,we propose a novel trace iterative method(TIM)based low-complexity algorithm,which has significantly lower complexity than higher Newton iterations.Convergence guarantees of the proposed detector are also provided.Numerical simulations verify that the proposed detector exhibits significant performance enhancement over recently reported iterative detectors and achieves close-to-MMSE performance while retaining the low-complexity advantage for systems with hundreds of antennas.
文摘The L<sub>1</sub> regression is a robust alternative to the least squares regression whenever there are outliers in the values of the response variable, or the errors follow a long-tailed distribution. To calculate the standard errors of the L<sub>1</sub> estimators, construct confidence intervals and test hypotheses about the parameters of the model, or to calculate a robust coefficient of determination, it is necessary to have an estimate of a scale parameterτ. This parameter is such that τ<sup>2</sup>/n is the variance of the median of a sample of size n from the errors distribution. [1] proposed the use of , a consistent, and so, an asymptotically unbiased estimator of τ. However, this estimator is not stable in small samples, in the sense that it can increase with the introduction of new independent variables in the model. When the errors follow the Laplace distribution, the maximum likelihood estimator of τ, say , is the mean absolute error, that is, the mean of the absolute residuals. This estimator always decreases when new independent variables are added to the model. Our objective is to develop asymptotic properties of under several errors distributions analytically. We also performed a simulation study to compare the distributions of both estimators in small samples with the objective to establish conditions in which is a good alternative to for such situations.
文摘There are four serious problems in the discriminant analysis. We developed an optimal linear discriminant function (optimal LDF) based on the minimum number of misclassification (minimum NM) using integer programming (IP). We call this LDF as Revised IP-OLDF. Only this LDF can discriminate the cases on the discriminant hyperplane (Probleml). This LDF and a hard-margin SVM (H-SVM) can discriminate the lineary separable data (LSD) exactly. Another LDFs may not discriminate the LSD theoretically (Problem2). When Revised IP-OLDF discriminate the Swiss banknote data with six variables, we find MNM of two-variables model such as (X4, X6) is zero. Because MNMk decreases monotounusly (MNMk 〉= MNM(k+1)), sixteen MNMs including (X4, X6) are zero. Until now, because there is no research of the LSD, we surveyed another three linear separable data sets such as: 18 exam scores data sets, the Japanese 44 cars data and six microarray datasets. When we discriminate the exam scores with MNM=0, we find the generalized inverse matrix technique causes the serious Problem3 and confirmed this fact by the cars data. At last, we claim the discriminant analysis is not the inferential statistics because there is no standard errors (SEs) of error rates and discriminant coefficients (Problem4). Therefore, we poroposed the "100-fold cross validation for the small sample" method (the method). By this break-through, we can choose the best model having minimum mean of error rate (M2) in the validation sample and obtaine two 95% confidence intervals (CIs) of error rate and discriminant coefficients. When we discriminate the exam scores by this new method, we obtaine the surprising results seven LDFs except for Fisher's LDF are almost the same as the trivial LDFs. In this research, we discriminate the Japanese 44 cars data because we can discuss four problems. There are six independent variables to discriminate 29 regular cars and 15 small cars. This data is linear separable by the emission rate (X1) and the number of seats (X3). We examine the validity of the new model selection procedure of the discriminant analysis. We proposed the model with minimum mean of error rates (M2) in the validation samples is the best model. We had examined this procedure by the exam scores, and we obtain good results. Moreover, the 95% CI of eight LDFs offers us real perception of the discriminant theory. However, the exam scores are different from the ordinal data. Therefore, we apply our theory and procedure to the Japanese 44 cars data and confirmed the same conclution.
基金Supported by the Industrial Internet Innovation and Development Project of Ministry of Industry and Information Technology (No.GHBJ2004)。
文摘A Taylor series expansion(TSE) based design for minimum mean-square error(MMSE) and QR decomposition(QRD) of multi-input and multi-output(MIMO) systems is proposed based on application specific instruction set processor(ASIP), which uses TSE algorithm instead of resource-consuming reciprocal and reciprocal square root(RSR) operations.The aim is to give a high performance implementation for MMSE and QRD in one programmable platform simultaneously.Furthermore, instruction set architecture(ISA) and the allocation of data paths in single instruction multiple data-very long instruction word(SIMD-VLIW) architecture are provided, offering more data parallelism and instruction parallelism for different dimension matrices and operation types.Meanwhile, multiple level numerical precision can be achieved with flexible table size and expansion order in TSE ISA.The ASIP has been implemented to a 28 nm CMOS process and frequency reaches 800 MHz.Experimental results show that the proposed design provides perfect numerical precision within the fixed bit-width of the ASIP, higher matrix processing rate better than the requirements of 5G system and more rate-area efficiency comparable with ASIC implementations.
文摘为了减小到达时间差(time difference of arrival,TDOA)方法在定位过程中存在的系统测量噪声和非视距误差,提出了一种基于最优线性无偏估计的TDOA定位算法。该方法首先利用Chan算法计算定位初始位置,在初始位置处泰勒级数展开得到位置估计量的线性模型,并求取误差加权矩阵、系数矩阵及协方差矩阵等参数;然后采用加权最小二乘法对最终位置进行最优无偏估计,同时推导出定位误差的最小方差阵。仿真实验结果表明,在相同环境下该算法的定位精度优于Chan和Taylor算法,同时显著减小了算法的运算量。