期刊文献+
共找到110篇文章
< 1 2 6 >
每页显示 20 50 100
LOW COMPLEXITY LMMSE TURBO EQUALIZATION FOR COMBINED ERROR CONTROL CODED AND LINEARLY PRECODED OFDM
1
作者 Qu Daiming Zhu Guangxi 《Journal of Electronics(China)》 2006年第1期1-6,共6页
The turbo equalization approach is studied for Orthogonal Frequency Division Multiplexing (OFDM) system with combined error control coding and linear precoding. While previous literatures employed linear precodcr of... The turbo equalization approach is studied for Orthogonal Frequency Division Multiplexing (OFDM) system with combined error control coding and linear precoding. While previous literatures employed linear precodcr of small size for complexity reasons, this paper proposes to use a linear precoder of size larger than or equal to the maximum length of the equivalent discrete-time channel in order to achieve full frequency diversity and reduce complexities of the error control coder/decoder. Also a low complexity Linear Minimum Mean Square Error (LMMSE) turbo equalizer is derived for the receiver. Through simulation and performance analysis, it is shown that the performance of the proposed scheme over frequency selective fading channel reaches the matched filter bound; compared with the same coded OFDM without linear precoding, the proposed scheme shows an Signal-to-Noise Ratio (SNR) improvement of at least 6dB at a bit error rate of 10 6 over a multipath channel with exponential power delay profile. Convergence behavior of the proposed scheme with turbo equalization using various type of linear precoder/transformer, various interleaver size and error control coder of various constraint length is also investigated. 展开更多
关键词 Orthogonal Frequency Division Multiplexing (OFDM) linear precoding Turbo equalization linear minimum Mean Square error (LMMSE)
下载PDF
On the Computing of the Minimum Distance of Linear Block Codes by Heuristic Methods
2
作者 Mohamed Askali Ahmed Azouaoui +1 位作者 Said Nouh Mostafa Belkasmi 《International Journal of Communications, Network and System Sciences》 2012年第11期774-784,共11页
The evaluation of the minimum distance of linear block codes remains an open problem in coding theory, and it is not easy to determine its true value by classical methods, for this reason the problem has been solved i... The evaluation of the minimum distance of linear block codes remains an open problem in coding theory, and it is not easy to determine its true value by classical methods, for this reason the problem has been solved in the literature with heuristic techniques such as genetic algorithms and local search algorithms. In this paper we propose two approaches to attack the hardness of this problem. The first approach is based on genetic algorithms and it yield to good results comparing to another work based also on genetic algorithms. The second approach is based on a new randomized algorithm which we call 'Multiple Impulse Method (MIM)', where the principle is to search codewords locally around the all-zero codeword perturbed by a minimum level of noise, anticipating that the resultant nearest nonzero codewords will most likely contain the minimum Hamming-weight codeword whose Hamming weight is equal to the minimum distance of the linear code. 展开更多
关键词 minimum Distance error Impulse Method Heuristic Methods Genetic Algorithms NP-HARDNESS linear error Correcting Codes BCH Codes QR Codes Double Circulant Codes
下载PDF
面向高速移动环境的二级信号检测算法
3
作者 王华华 张旭 李峰 《计算机应用》 CSCD 北大核心 2024年第4期1236-1241,共6页
正交时间序列复用(OTSM)可以以更低的复杂度实现类似正交时频空间(OTFS)调制的传输性能,为未来需要低复杂度收发器的高速移动性通信系统提供一种有前景的解决方法。针对现有的基于时域的高斯-赛德尔(GS)迭代均衡效率不高的问题,提出二... 正交时间序列复用(OTSM)可以以更低的复杂度实现类似正交时频空间(OTFS)调制的传输性能,为未来需要低复杂度收发器的高速移动性通信系统提供一种有前景的解决方法。针对现有的基于时域的高斯-赛德尔(GS)迭代均衡效率不高的问题,提出二级信号检测算法。首先在时域进行低复杂度线性最小均方误差(LMMSE)检测,其次采用连续超松弛(SOR)迭代算法进一步消除残余符号干扰。为进一步提高收敛效率和检测性能,对SOR算法进行线性优化得到改进SOR(ISOR)算法。仿真实验结果表明,与SOR算法相比,ISOR算法在增加较低复杂度前提下可以提升检测性能并加快算法收敛。与GS迭代算法相比,ISOR算法采用16QAM调制且误码率为10-4时有1.61 dB的增益。 展开更多
关键词 正交时间序列复用 正交时频空间调制 连续超松弛 信号检测 线性最小均方误差 符号干扰
下载PDF
A New Class of Biased Linear Estimators in Deficient-rank Linear Models 被引量:1
4
作者 归庆明 段清堂 +1 位作者 周巧云 郭建锋 《Chinese Quarterly Journal of Mathematics》 CSCD 2001年第1期71-78,共8页
In this paper, we define a new class of biased linear estimators of the vector of unknown parameters in the deficient_rank linear model based on the spectral decomposition expression of the best linear minimun bias es... In this paper, we define a new class of biased linear estimators of the vector of unknown parameters in the deficient_rank linear model based on the spectral decomposition expression of the best linear minimun bias estimator. Some important properties are discussed. By appropriate choices of bias parameters, we construct many interested and useful biased linear estimators, which are the extension of ordinary biased linear estimators in the full_rank linear model to the deficient_rank linear model. At last, we give a numerical example in geodetic adjustment. 展开更多
关键词 deficient_rank model best linear minimum bias estimator generalized principal components estimator mean squared error condition number
下载PDF
Lower bound on BER performance for maximal ratio combining with weighting errors 被引量:1
5
作者 盛彬 尤肖虎 《Journal of Southeast University(English Edition)》 EI CAS 2005年第4期379-384,共6页
The theoretical lower bounds on mean squared channel estimation errors for typical fading channels are presented by the infinite-length and non-causal Wiener filter and the exact closed-form expressions of the lower b... The theoretical lower bounds on mean squared channel estimation errors for typical fading channels are presented by the infinite-length and non-causal Wiener filter and the exact closed-form expressions of the lower bounds for different channel Doppler spectra are derived. Based on the obtained lower bounds on mean squared channel estimation errors, the limits on bit error rate (BER) for maximal ratio combining (MRC) with Gaussian distributed weighting errors on independent and identically distributed (i. i. d) fading channels are presented. Numerical results show that the BER performances of ideal MRC are the lower bounds on the BER performances of non-ideal MRC and deteriorate as the maximum Doppler frequency increases or the SNR of channel estimate decreases. 展开更多
关键词 lower bound bit error rate minimum mean-square error channel estimation maximal ratio combining
下载PDF
Low-complexity signal detection for massive MIMO systems via trace iterative method
6
作者 IMRAN A.Khoso ZHANG Xiaofei +2 位作者 ABDUL Hayee Shaikh IHSAN A.Khoso ZAHEER Ahmed Dayo 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第3期549-557,共9页
Linear minimum mean square error(MMSE)detection has been shown to achieve near-optimal performance for massive multiple-input multiple-output(MIMO)systems but inevitably involves complicated matrix inversion,which ent... Linear minimum mean square error(MMSE)detection has been shown to achieve near-optimal performance for massive multiple-input multiple-output(MIMO)systems but inevitably involves complicated matrix inversion,which entails high complexity.To avoid the exact matrix inversion,a considerable number of implicit and explicit approximate matrix inversion based detection methods is proposed.By combining the advantages of both the explicit and the implicit matrix inversion,this paper introduces a new low-complexity signal detection algorithm.Firstly,the relationship between implicit and explicit techniques is analyzed.Then,an enhanced Newton iteration method is introduced to realize an approximate MMSE detection for massive MIMO uplink systems.The proposed improved Newton iteration significantly reduces the complexity of conventional Newton iteration.However,its complexity is still high for higher iterations.Thus,it is applied only for first two iterations.For subsequent iterations,we propose a novel trace iterative method(TIM)based low-complexity algorithm,which has significantly lower complexity than higher Newton iterations.Convergence guarantees of the proposed detector are also provided.Numerical simulations verify that the proposed detector exhibits significant performance enhancement over recently reported iterative detectors and achieves close-to-MMSE performance while retaining the low-complexity advantage for systems with hundreds of antennas. 展开更多
关键词 signal detection LOW-COMPLEXITY linear minimum mean square error(MMSE) massive multiple-input multiple-output(MIMO) trace iterative method(TIM)
下载PDF
A Comparison of the Estimators of the Scale Parameter of the Errors Distribution in the L1 Regression
7
作者 Carmen D. Saldiva de André Silvia Nagib Elian 《Open Journal of Statistics》 2022年第2期261-276,共16页
The L<sub>1</sub> regression is a robust alternative to the least squares regression whenever there are outliers in the values of the response variable, or the errors follow a long-tailed distribution. To ... The L<sub>1</sub> regression is a robust alternative to the least squares regression whenever there are outliers in the values of the response variable, or the errors follow a long-tailed distribution. To calculate the standard errors of the L<sub>1</sub> estimators, construct confidence intervals and test hypotheses about the parameters of the model, or to calculate a robust coefficient of determination, it is necessary to have an estimate of a scale parameterτ. This parameter is such that τ<sup>2</sup>/n is the variance of the median of a sample of size n from the errors distribution. [1] proposed the use of , a consistent, and so, an asymptotically unbiased estimator of τ. However, this estimator is not stable in small samples, in the sense that it can increase with the introduction of new independent variables in the model. When the errors follow the Laplace distribution, the maximum likelihood estimator of τ, say , is the mean absolute error, that is, the mean of the absolute residuals. This estimator always decreases when new independent variables are added to the model. Our objective is to develop asymptotic properties of under several errors distributions analytically. We also performed a simulation study to compare the distributions of both estimators in small samples with the objective to establish conditions in which is a good alternative to for such situations. 展开更多
关键词 minimum Sum of Absolute errors Regression Multiple linear Regression Variable Selection Heavy Tail Distributions Asymptotic Theory
下载PDF
Discriminant Analysis of the Linear Separable Data - Japanese 44 Cars
8
作者 Shuichi Shinmura 《Journal of Statistical Science and Application》 2016年第4期165-178,共14页
There are four serious problems in the discriminant analysis. We developed an optimal linear discriminant function (optimal LDF) based on the minimum number of misclassification (minimum NM) using integer programm... There are four serious problems in the discriminant analysis. We developed an optimal linear discriminant function (optimal LDF) based on the minimum number of misclassification (minimum NM) using integer programming (IP). We call this LDF as Revised IP-OLDF. Only this LDF can discriminate the cases on the discriminant hyperplane (Probleml). This LDF and a hard-margin SVM (H-SVM) can discriminate the lineary separable data (LSD) exactly. Another LDFs may not discriminate the LSD theoretically (Problem2). When Revised IP-OLDF discriminate the Swiss banknote data with six variables, we find MNM of two-variables model such as (X4, X6) is zero. Because MNMk decreases monotounusly (MNMk 〉= MNM(k+1)), sixteen MNMs including (X4, X6) are zero. Until now, because there is no research of the LSD, we surveyed another three linear separable data sets such as: 18 exam scores data sets, the Japanese 44 cars data and six microarray datasets. When we discriminate the exam scores with MNM=0, we find the generalized inverse matrix technique causes the serious Problem3 and confirmed this fact by the cars data. At last, we claim the discriminant analysis is not the inferential statistics because there is no standard errors (SEs) of error rates and discriminant coefficients (Problem4). Therefore, we poroposed the "100-fold cross validation for the small sample" method (the method). By this break-through, we can choose the best model having minimum mean of error rate (M2) in the validation sample and obtaine two 95% confidence intervals (CIs) of error rate and discriminant coefficients. When we discriminate the exam scores by this new method, we obtaine the surprising results seven LDFs except for Fisher's LDF are almost the same as the trivial LDFs. In this research, we discriminate the Japanese 44 cars data because we can discuss four problems. There are six independent variables to discriminate 29 regular cars and 15 small cars. This data is linear separable by the emission rate (X1) and the number of seats (X3). We examine the validity of the new model selection procedure of the discriminant analysis. We proposed the model with minimum mean of error rates (M2) in the validation samples is the best model. We had examined this procedure by the exam scores, and we obtain good results. Moreover, the 95% CI of eight LDFs offers us real perception of the discriminant theory. However, the exam scores are different from the ordinal data. Therefore, we apply our theory and procedure to the Japanese 44 cars data and confirmed the same conclution. 展开更多
关键词 Model Selection Procedure Means of error Rates Fisher's LDF Logistic Regression Support VectorMachine (SVM) minimum Number of Misclassifications minimum NM MNM) Revised IP-OLDF based onMNM criterion Revised IPLP-OLDF Revised LP-OLDF linear Separable Data and Model K-fold Crossvalidation.
下载PDF
A TSE based design for MMSE and QRD of MIMO systems based on ASIP
9
作者 冯雪林 SHI Jinglin +3 位作者 CHEN Yang FU Yanlu ZHANG Qineng XIAO Feng 《High Technology Letters》 EI CAS 2023年第2期166-173,共8页
A Taylor series expansion(TSE) based design for minimum mean-square error(MMSE) and QR decomposition(QRD) of multi-input and multi-output(MIMO) systems is proposed based on application specific instruction set process... A Taylor series expansion(TSE) based design for minimum mean-square error(MMSE) and QR decomposition(QRD) of multi-input and multi-output(MIMO) systems is proposed based on application specific instruction set processor(ASIP), which uses TSE algorithm instead of resource-consuming reciprocal and reciprocal square root(RSR) operations.The aim is to give a high performance implementation for MMSE and QRD in one programmable platform simultaneously.Furthermore, instruction set architecture(ISA) and the allocation of data paths in single instruction multiple data-very long instruction word(SIMD-VLIW) architecture are provided, offering more data parallelism and instruction parallelism for different dimension matrices and operation types.Meanwhile, multiple level numerical precision can be achieved with flexible table size and expansion order in TSE ISA.The ASIP has been implemented to a 28 nm CMOS process and frequency reaches 800 MHz.Experimental results show that the proposed design provides perfect numerical precision within the fixed bit-width of the ASIP, higher matrix processing rate better than the requirements of 5G system and more rate-area efficiency comparable with ASIC implementations. 展开更多
关键词 multi-input and multi-output(MIMO) minimum mean-square error(MMSE) QR decomposition(QRD) Taylor series expansion(TSE) application specific instruction set processor(ASIP) instruction set architecture(ISA) single instruction multiple data(SIMD) very long instruction word(VLIW)
下载PDF
离散点的线轮廓度评价算法 被引量:5
10
作者 张进 王仲 +2 位作者 李超 贡力 叶声华 《光学精密工程》 EI CAS CSCD 北大核心 2008年第11期2281-2285,共5页
为了实现微型零件轮廓的高精度测量,根据其成像特点,提出了一种基于离散点的轮廓度评价算法——被测轮廓与理论轮廓离散点间最小距离法。首先,提取出被测轮廓的边缘点信息,然后,依据理论轮廓计算出一系列间距极小的坐标点并建立坐标系,... 为了实现微型零件轮廓的高精度测量,根据其成像特点,提出了一种基于离散点的轮廓度评价算法——被测轮廓与理论轮廓离散点间最小距离法。首先,提取出被测轮廓的边缘点信息,然后,依据理论轮廓计算出一系列间距极小的坐标点并建立坐标系,将被测轮廓点与理论轮廓点对应,最后将计算得出的每个被测轮廓点到最近理论轮廓点的距离作为该点的轮廓度误差。实验结果证明,测量精度优于2 pixel,此方法可有效地提高线轮廓度的评价精度和效率。 展开更多
关键词 线轮廓度误差 微型零件 最小距离法 离散点
下载PDF
分布式发射天线MIMO信号的最优线性检测 被引量:8
11
作者 易新平 唐友喜 +1 位作者 邵士海 吴桐 《电子学报》 EI CAS CSCD 北大核心 2009年第12期2694-2699,共6页
在分布式发射天线多输入多输出(MIMO)系统中,信道传播时延使各个发射天线的符号异步到达接收天线.接收信号符号间干扰的特殊性使分布式发射天线MIMO信号的线性检测算法更加复杂,最优线性检测算法也不能直接由最小均方误差(MMSE)准则得到... 在分布式发射天线多输入多输出(MIMO)系统中,信道传播时延使各个发射天线的符号异步到达接收天线.接收信号符号间干扰的特殊性使分布式发射天线MIMO信号的线性检测算法更加复杂,最优线性检测算法也不能直接由最小均方误差(MMSE)准则得到.针对这一问题,提出了基于MMSE准则的分布式发射天线MIMO信号的最优线性检测算法:先最大比合并,再最小均方误差检测.并且,通过界定误码率上下限,得到其分集阶数.仿真结果验证了最优线性检测接收端信号处理方式的正确性. 展开更多
关键词 分布式天线系统 多输入多输出 最优线性检测 最大比合并 最小均方误差
下载PDF
基于改进粒子滤波的双站无源定位跟踪算法研究 被引量:5
12
作者 贺静波 彭复员 黄高明 《系统仿真学报》 EI CAS CSCD 北大核心 2008年第11期2825-2827,共3页
在非线性非高斯状态空间下,粒子滤波器是一种有效的非线性滤波算法,它的关键问题包括粒子权重的计算、粒子重采样和状态估计等。根据粒子滤波算法思想和双站无源定位跟踪的非线性,将粒子滤波算法用于双站无源定位跟踪问题,给出了一种改... 在非线性非高斯状态空间下,粒子滤波器是一种有效的非线性滤波算法,它的关键问题包括粒子权重的计算、粒子重采样和状态估计等。根据粒子滤波算法思想和双站无源定位跟踪的非线性,将粒子滤波算法用于双站无源定位跟踪问题,给出了一种改进的粒子滤波算法,并对其关键问题根据双站无源定位跟踪的特殊性进行了改进。利用matlab进行了仿真实验,与最小二乘算法、扩展卡尔曼滤波算法进行了比较,结果表明所提算法定位跟踪精度优于其他方法。 展开更多
关键词 粒子滤波 最小二乘滤波 扩展卡尔曼滤波 无源定位 算法
下载PDF
基于线性最小均方误差估计的SAR图像降噪 被引量:4
13
作者 刘书君 吴国庆 +2 位作者 张新征 沈晓东 李勇明 《系统工程与电子技术》 EI CSCD 北大核心 2016年第4期785-791,共7页
针对合成孔径雷达(synthetic aperture radar,SAR)图像降噪过程中容易引起细节纹理信息损失的问题,该文结合SAR图像相干斑噪声的统计特性,提出了一种基于变换域系数线性最小均方误差(linear minimum mean-square error,LMMSE)估计的SAR... 针对合成孔径雷达(synthetic aperture radar,SAR)图像降噪过程中容易引起细节纹理信息损失的问题,该文结合SAR图像相干斑噪声的统计特性,提出了一种基于变换域系数线性最小均方误差(linear minimum mean-square error,LMMSE)估计的SAR图像降噪方法。首先通过SAR场景下的Kmeans聚类算法将相似图像块聚类;然后针对每一类相似图像块集合进行奇异值分解(singular value decomposition,SVD),得到同时包含图像块集合行列相关信息的含噪奇异值系数;为从含噪奇异值系数中更准确地估计出真实图像奇异值的系数,先通过加性独立信号噪声(additive signal-dependent noise,ASDN)模型将乘性噪声转化为加性噪声,再利用LMMSE准则对奇异值系数进行估计,最后将估计结果重构得到降噪后的图像块集合。实验结果表明,该方法充分利用相似图像块集合奇异值系数稀疏的特性,采用LMMSE准则估计奇异值系数,既保证了系数中噪声分量的去除又避免了图像纹理细节对应小系数的丢失,不仅去噪效果明显,同时能有效地保持图像纹理细节,具有良好的图像视觉效果。 展开更多
关键词 合成孔径雷达图像降噪 聚类 奇异值分解 最小均方误差估计
下载PDF
按最小圆柱包络法评定空间直线度误差 被引量:5
14
作者 张青 范光照 +1 位作者 徐振 高李柱 《华中理工大学学报》 CSCD 北大核心 1997年第8期41-43,共3页
建立了按最小圆柱包络法评定空间直线度误差的非线性数学模型,通过误差分析,证明了该数学模型不宜进行线性化处理.提出了空间直线度误差的最小条件判别准则及用计算机评定空间直线度的方法;
关键词 空间直线度误差 最小圆柱包络法 直线度
下载PDF
直线光栅尺的精度评价及标定方法研究 被引量:6
15
作者 任东旭 李彬 《组合机床与自动化加工技术》 北大核心 2020年第6期54-56,60,共4页
直线光栅尺栅距误差与累积误差是衡量直线位移基准及测量精度的两个核心指标,为提升光栅尺精度的标定评价方法及误差补偿的精准度,文章基于光栅尺曝光刻线原理分析了影响光栅尺精度的误差源,提出了一种光栅条纹的最小区域法的评定方法,... 直线光栅尺栅距误差与累积误差是衡量直线位移基准及测量精度的两个核心指标,为提升光栅尺精度的标定评价方法及误差补偿的精准度,文章基于光栅尺曝光刻线原理分析了影响光栅尺精度的误差源,提出了一种光栅条纹的最小区域法的评定方法,基于10种典型的光栅条纹特征总结出了最小区域法栅距误差表达式,诠释了最小区域面积及平均线宽的栅距误差评定方法,并对累积误差和热膨胀系数的标定及评价方法进行了理论阐述,研究给出了直线光栅尺精度检测试验方法及流程;试验结果表明,1000mm长光栅尺的拼接误差±25nm,最大栅距误差<43nm,累积误差<1μm,验证了精度评价及标定方法的准确性,可用于工程应用。 展开更多
关键词 直线位移测量 玻璃光栅尺 精度标定 栅距误差 最小区域法
下载PDF
基于最优线性无偏估计的TDOA定位算法 被引量:4
16
作者 关维国 高阳 姚清志 《计算机应用研究》 CSCD 北大核心 2015年第8期2472-2474,共3页
为了减小到达时间差(time difference of arrival,TDOA)方法在定位过程中存在的系统测量噪声和非视距误差,提出了一种基于最优线性无偏估计的TDOA定位算法。该方法首先利用Chan算法计算定位初始位置,在初始位置处泰勒级数展开得到位置... 为了减小到达时间差(time difference of arrival,TDOA)方法在定位过程中存在的系统测量噪声和非视距误差,提出了一种基于最优线性无偏估计的TDOA定位算法。该方法首先利用Chan算法计算定位初始位置,在初始位置处泰勒级数展开得到位置估计量的线性模型,并求取误差加权矩阵、系数矩阵及协方差矩阵等参数;然后采用加权最小二乘法对最终位置进行最优无偏估计,同时推导出定位误差的最小方差阵。仿真实验结果表明,在相同环境下该算法的定位精度优于Chan和Taylor算法,同时显著减小了算法的运算量。 展开更多
关键词 到达时间差 定位误差 非视距 最优线性无偏估计 最小方差
下载PDF
OFDM通信系统中的一种通用的信道估计模型 被引量:9
17
作者 束锋 罗琳 吴乐南 《电路与系统学报》 CSCD 2001年第2期39-43,共5页
本文根据DFT的一个性质为OFDM通信系统构造了一种通用信道估计模型。 该模型利用系统子信道中的一部分专门进行信道估计,适用于慢消失信道。该模型同最小平方差(LS)和最小均方差(LMMSE)相结合分别形成两种信道估计方法, 并从理论角度分... 本文根据DFT的一个性质为OFDM通信系统构造了一种通用信道估计模型。 该模型利用系统子信道中的一部分专门进行信道估计,适用于慢消失信道。该模型同最小平方差(LS)和最小均方差(LMMSE)相结合分别形成两种信道估计方法, 并从理论角度分别分析它们的计算复杂性和均方差性能。对多径信道仿真表明,基于LS的方法误符号率性能比基于LMMSE的方法差2-3dB,但是计算复杂度较低。总之,此信道估计模型的计算复杂度和性能随着用于信道估计的子信道数目增加而增加,当所用子信道数目是周期头长度的两倍时,达到计算量和估计性能的最佳平衡。 展开更多
关键词 正交频分复用 信道估计模型 离散傅里叶变换 通信系统
下载PDF
迭代无味卡尔曼滤波器 被引量:6
18
作者 程水英 毛云祥 《数据采集与处理》 CSCD 北大核心 2009年第B10期43-48,共6页
通过对无味卡尔曼滤波器(Unscented Kalman filter,UKF)的误差进行分析,提出了迭代UKF(IUKF)算法。该基本思路是用测量更新后的状态估计去重新对状态量和观测量的一步预测,然后再次应用LMMSE估计子估计状态量的均值和协方差阵,... 通过对无味卡尔曼滤波器(Unscented Kalman filter,UKF)的误差进行分析,提出了迭代UKF(IUKF)算法。该基本思路是用测量更新后的状态估计去重新对状态量和观测量的一步预测,然后再次应用LMMSE估计子估计状态量的均值和协方差阵,如此多次迭代后的滤波估计输出具有更高的精度和更小的方差,故滤波器表现出更好的一致性。Monte Carlo仿真表明,IUKF主要应用于观测噪声较小的场合,其中的迭代只需进行2~3次即可。 展开更多
关键词 递推非线性滤波 线性最小均方误差估计子 无味卡尔曼滤波器 迭代无味卡尔曼滤波器
下载PDF
基于训练序列的MIMO信道估计算法研究 被引量:2
19
作者 李化 王华奎 赵清华 《太原理工大学学报》 CAS 北大核心 2008年第5期471-474,共4页
针对MIMO系统,基于训练序列的信道估计方法,详细推导出ML、LS和LMMSE方法的估计值,并进行了性能比较。在一定条件下,信道系数矩阵的ML、LS估计值具有相同的表达形式。计算机仿真表明,LMMSE方法和ML、LS方法的估计效果基本一致。,在高信... 针对MIMO系统,基于训练序列的信道估计方法,详细推导出ML、LS和LMMSE方法的估计值,并进行了性能比较。在一定条件下,信道系数矩阵的ML、LS估计值具有相同的表达形式。计算机仿真表明,LMMSE方法和ML、LS方法的估计效果基本一致。,在高信噪比、有限训练符号数、较少发射天线数的条件下,可以精确地估计出信道系数。 展开更多
关键词 MIMO 信道估计 最大似然估计 最小二乘估计 最小均方误差估计
下载PDF
一种快速KMSE算法及其在异常入侵检测中的应用 被引量:1
20
作者 范自柱 徐勇 +1 位作者 徐保根 朱旗 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2011年第3期90-94,共5页
为提高核最小均方误差(Kernel Minimum Squared Error,KMSE)方法的计算效率,利用特征空间中不相关的样本矢量("基样本"),提出了一种快速KMSE算法,并利用"基样本"与一个样本间的核函数对该样本抽取特征.在入侵检测... 为提高核最小均方误差(Kernel Minimum Squared Error,KMSE)方法的计算效率,利用特征空间中不相关的样本矢量("基样本"),提出了一种快速KMSE算法,并利用"基样本"与一个样本间的核函数对该样本抽取特征.在入侵检测数据集KDDCUP1999和其他基准数据集上实验表明:该方法不仅高效,并且分类和检测效果良好,"基样本"只占训练样本的很小一部分比例,使用它们可以显著提高特征抽取效率. 展开更多
关键词 核最小均方误差 鉴别分析 快速算法 线性相关 入侵检测
下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部