期刊文献+
共找到4,322篇文章
< 1 2 217 >
每页显示 20 50 100
Multiway Relay Based Framework for Network Coding in Multi-Hop WSNs
1
作者 Vinod Kumar Menaria Anand Nayyar +1 位作者 Sandeep Kumar Ketan Kotecha 《Computers, Materials & Continua》 SCIE EI 2023年第1期1199-1216,共18页
In today’s information technology(IT)world,the multi-hop wireless sensor networks(MHWSNs)are considered the building block for the Internet of Things(IoT)enabled communication systems for controlling everyday tasks o... In today’s information technology(IT)world,the multi-hop wireless sensor networks(MHWSNs)are considered the building block for the Internet of Things(IoT)enabled communication systems for controlling everyday tasks of organizations and industry to provide quality of service(QoS)in a stipulated time slot to end-user over the Internet.Smart city(SC)is an example of one such application which can automate a group of civil services like automatic control of traffic lights,weather prediction,surveillance,etc.,in our daily life.These IoT-based networks with multi-hop communication and multiple sink nodes provide efficient communication in terms of performance parameters such as throughput,energy efficiency,and end-to-end delay,wherein low latency is considered a challenging issue in next-generation networks(NGN).This paper introduces a single and parallels stable server queuing model with amulti-class of packets and native and coded packet flowto illustrate the simple chain topology and complexmultiway relay(MWR)node with specific neighbor topology.Further,for improving data transmission capacity inMHWSNs,an analytical framework for packet transmission using network coding at the MWR node in the network layer with opportunistic listening is performed by considering bi-directional network flow at the MWR node.Finally,the accuracy of the proposed multi-server multi-class queuing model is evaluated with and without network coding at the network layer by transmitting data packets.The results of the proposed analytical framework are validated and proved effective by comparing these analytical results to simulation results. 展开更多
关键词 multi-hop wireless sensor networks network coding multiway relay node THROUGHPUT multi-server multi-class queuing models
下载PDF
Using Hybrid Penalty and Gated Linear Units to Improve Wasserstein Generative Adversarial Networks for Single-Channel Speech Enhancement
2
作者 Xiaojun Zhu Heming Huang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第6期2155-2172,共18页
Recently,speech enhancement methods based on Generative Adversarial Networks have achieved good performance in time-domain noisy signals.However,the training of Generative Adversarial Networks has such problems as con... Recently,speech enhancement methods based on Generative Adversarial Networks have achieved good performance in time-domain noisy signals.However,the training of Generative Adversarial Networks has such problems as convergence difficulty,model collapse,etc.In this work,an end-to-end speech enhancement model based on Wasserstein Generative Adversarial Networks is proposed,and some improvements have been made in order to get faster convergence speed and better generated speech quality.Specifically,in the generator coding part,each convolution layer adopts different convolution kernel sizes to conduct convolution operations for obtaining speech coding information from multiple scales;a gated linear unit is introduced to alleviate the vanishing gradient problem with the increase of network depth;the gradient penalty of the discriminator is replaced with spectral normalization to accelerate the convergence rate of themodel;a hybrid penalty termcomposed of L1 regularization and a scale-invariant signal-to-distortion ratio is introduced into the loss function of the generator to improve the quality of generated speech.The experimental results on both TIMIT corpus and Tibetan corpus show that the proposed model improves the speech quality significantly and accelerates the convergence speed of the model. 展开更多
关键词 Speech enhancement generative adversarial networks hybrid penalty gated linear units multi-scale convolution
下载PDF
Semantic-aware graph convolution network on multi-hop paths for link prediction
3
作者 彭斐 CHEN Shudong +2 位作者 QI Donglin YU Yong TONG Da 《High Technology Letters》 EI CAS 2023年第3期269-278,共10页
Knowledge graph(KG) link prediction aims to address the problem of missing multiple valid triples in KGs. Existing approaches either struggle to efficiently model the message passing process of multi-hop paths or lack... Knowledge graph(KG) link prediction aims to address the problem of missing multiple valid triples in KGs. Existing approaches either struggle to efficiently model the message passing process of multi-hop paths or lack transparency of model prediction principles. In this paper,a new graph convolutional network path semantic-aware graph convolution network(PSGCN) is proposed to achieve modeling the semantic information of multi-hop paths. PSGCN first uses a random walk strategy to obtain all-hop paths in KGs,then captures the semantics of the paths by Word2Sec and long shortterm memory(LSTM) models,and finally converts them into a potential representation for the graph convolution network(GCN) messaging process. PSGCN combines path-based inference methods and graph neural networks to achieve better interpretability and scalability. In addition,to ensure the robustness of the model,the value of the path thresholdKis experimented on the FB15K-237 and WN18RR datasets,and the final results prove the effectiveness of the model. 展开更多
关键词 knowledge graph(KG) link prediction graph convolution network(GCN) knowledge graph completion(KGC) multi-hop paths semantic information
下载PDF
CRB:A new rumor blocking algorithm in online social networks based on competitive spreading model and influence maximization
4
作者 董晨 徐桂琼 孟蕾 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第8期588-604,共17页
The virtuality and openness of online social platforms make networks a hotbed for the rapid propagation of various rumors.In order to block the outbreak of rumor,one of the most effective containment measures is sprea... The virtuality and openness of online social platforms make networks a hotbed for the rapid propagation of various rumors.In order to block the outbreak of rumor,one of the most effective containment measures is spreading positive information to counterbalance the diffusion of rumor.The spreading mechanism of rumors and effective suppression strategies are significant and challenging research issues.Firstly,in order to simulate the dissemination of multiple types of information,we propose a competitive linear threshold model with state transition(CLTST)to describe the spreading process of rumor and anti-rumor in the same network.Subsequently,we put forward a community-based rumor blocking(CRB)algorithm based on influence maximization theory in social networks.Its crucial step is to identify a set of influential seeds that propagate anti-rumor information to other nodes,which includes community detection,selection of candidate anti-rumor seeds and generation of anti-rumor seed set.Under the CLTST model,the CRB algorithm has been compared with six state-of-the-art algorithms on nine online social networks to verify the performance.Experimental results show that the proposed model can better reflect the process of rumor propagation,and review the propagation mechanism of rumor and anti-rumor in online social networks.Moreover,the proposed CRB algorithm has better performance in weakening the rumor dissemination ability,which can select anti-rumor seeds in networks more accurately and achieve better performance in influence spread,sensitivity analysis,seeds distribution and running time. 展开更多
关键词 online social networks rumor blocking competitive linear threshold model influence maximization
下载PDF
Integrating Multiple Linear Regression and Infectious Disease Models for Predicting Information Dissemination in Social Networks
5
作者 Junchao Dong Tinghui Huang +1 位作者 Liang Min Wenyan Wang 《Journal of Electronic Research and Application》 2023年第2期20-27,共8页
Social network is the mainstream medium of current information dissemination,and it is particularly important to accurately predict its propagation law.In this paper,we introduce a social network propagation model int... Social network is the mainstream medium of current information dissemination,and it is particularly important to accurately predict its propagation law.In this paper,we introduce a social network propagation model integrating multiple linear regression and infectious disease model.Firstly,we proposed the features that affect social network communication from three dimensions.Then,we predicted the node influence via multiple linear regression.Lastly,we used the node influence as the state transition of the infectious disease model to predict the trend of information dissemination in social networks.The experimental results on a real social network dataset showed that the prediction results of the model are consistent with the actual information dissemination trends. 展开更多
关键词 Social networks Epidemic model linear regression model
下载PDF
Social Robot Detection Method with Improved Graph Neural Networks
6
作者 Zhenhua Yu Liangxue Bai +1 位作者 Ou Ye Xuya Cong 《Computers, Materials & Continua》 SCIE EI 2024年第2期1773-1795,共23页
Social robot accounts controlled by artificial intelligence or humans are active in social networks,bringing negative impacts to network security and social life.Existing social robot detection methods based on graph ... Social robot accounts controlled by artificial intelligence or humans are active in social networks,bringing negative impacts to network security and social life.Existing social robot detection methods based on graph neural networks suffer from the problem of many social network nodes and complex relationships,which makes it difficult to accurately describe the difference between the topological relations of nodes,resulting in low detection accuracy of social robots.This paper proposes a social robot detection method with the use of an improved neural network.First,social relationship subgraphs are constructed by leveraging the user’s social network to disentangle intricate social relationships effectively.Then,a linear modulated graph attention residual network model is devised to extract the node and network topology features of the social relation subgraph,thereby generating comprehensive social relation subgraph features,and the feature-wise linear modulation module of the model can better learn the differences between the nodes.Next,user text content and behavioral gene sequences are extracted to construct social behavioral features combined with the social relationship subgraph features.Finally,social robots can be more accurately identified by combining user behavioral and relationship features.By carrying out experimental studies based on the publicly available datasets TwiBot-20 and Cresci-15,the suggested method’s detection accuracies can achieve 86.73%and 97.86%,respectively.Compared with the existing mainstream approaches,the accuracy of the proposed method is 2.2%and 1.35%higher on the two datasets.The results show that the method proposed in this paper can effectively detect social robots and maintain a healthy ecological environment of social networks. 展开更多
关键词 Social robot detection social relationship subgraph graph attention network feature linear modulation behavioral gene sequences
下载PDF
Research on Grid-Connected Control Strategy of Distributed Generator Based on Improved Linear Active Disturbance Rejection Control
7
作者 Xin Mao Hongsheng Su Jingxiu Li 《Energy Engineering》 EI 2024年第12期3929-3951,共23页
The virtual synchronous generator(VSG)technology has been proposed to address the problem of system frequency and active power oscillation caused by grid-connected new energy power sources.However,the traditional volt... The virtual synchronous generator(VSG)technology has been proposed to address the problem of system frequency and active power oscillation caused by grid-connected new energy power sources.However,the traditional voltage-current double-closed-loop control used in VSG has the disadvantages of poor disturbance immunity and insufficient dynamic response.In light of the issues above,a virtual synchronous generator voltage outer-loop control strategy based on improved linear autonomous disturbance rejection control(ILADRC)is put forth for consideration.Firstly,an improved first-order linear self-immunity control structure is established for the characteristics of the voltage outer loop;then,the effects of two key control parameters-observer bandwidthω_(0)and controller bandwidthω_(c)on the control system are analyzed,and the key parameters of ILADRC are optimally tuned online using improved gray wolf optimizer-radial basis function(IGWO-RBF)neural network.A simulationmodel is developed using MATLAB to simulate,analyze,and compare the method introduced in this paper.Simulations are performed with the traditional control strategy for comparison,and the results demonstrate that the proposed control method offers superior anti-interference performance.It effectively addresses power and frequency oscillation issues and enhances the stability of the VSG during grid-connected operation. 展开更多
关键词 Virtual synchronous generator(VSG) active power improved linear active disturbance rejection control(ILADRC) radial basis function(RBF)neural networks improved gray wolf optimizer(IGWO)
下载PDF
Probability Distribution of Ratio of China Aviation Network Edge Vertices Degree and Its Evolutionary Trace Based on Complex Network
8
作者 Cheng Xiangjun Yang Fang Wei Liying 《Journal of Traffic and Transportation Engineering》 2024年第3期119-129,共11页
In order to reveal the complex network characteristics and evolution principle of China aviation network, the probability distribution and evolution trace of ratio of China aviation network edge vertices degree were s... In order to reveal the complex network characteristics and evolution principle of China aviation network, the probability distribution and evolution trace of ratio of China aviation network edge vertices degree were studied based on the statistics data of China civil aviation network in 1988, 1994, 2001, 2008 and 2015. According to the theory and method of complex network, the network system was constructed with the city where the airport was located as the network node and the route between cities as the edge of the network. Based on the statistical data, the ratio of edge vertices degree in China aviation network in 1988, 1994, 2001, 2008 and 2015 were calculated. Using the probability statistical analysis method and regression analysis approach, it was found that the ratio of edge vertices degree had linear probability distribution and the two parameters of the probability distribution had linear evolution trace. 展开更多
关键词 Complex network China aviation network ratio of edge vertices degree linear probability distribution linear evolution trace.
下载PDF
Probability Distribution of China Aviation Network Average Degree of Edge Vertices and Its Evolutionary Trace Based on Complex Network
9
作者 Cheng Xiangjun Zhang Chunyue Liang Yanping 《Journal of Traffic and Transportation Engineering》 2024年第2期51-62,共12页
In order to reveal the complex network characteristics and evolution principle of China aviation network, the probability distribution and evolution trace of average degree of edge vertices of China aviation network w... In order to reveal the complex network characteristics and evolution principle of China aviation network, the probability distribution and evolution trace of average degree of edge vertices of China aviation network were studied based on the statistics data of China civil aviation network in 1988, 1994, 2001, 2008 and 2015. According to the theory and method of complex network, the network system was constructed with the city where the airport was located as the network node and the route between cities as the edge of the network. Based on the statistical data, the average degrees of edge vertices in China aviation network in 1988, 1994, 2001, 2008 and 2015 were calculated. Using the probability statistical analysis method and regression analysis approach, it was found that the average degree of edge vertices had the probability distribution of normal function and the position parameters and scale parameters of the probability distribution had linear evolution trace. 展开更多
关键词 Complex network China aviation network average degree of edge vertices normal distribution linear evolution trace
下载PDF
Probability Distribution of Arithmetic Average of China Aviation Network Edge Vertices Nearest Neighbor Average Degree Value and Its Evolutionary Trace Based on Complex Network
10
作者 Cheng Xiangjun Yang Fang Xiong Zhihua 《Journal of Traffic and Transportation Engineering》 2024年第4期163-174,共12页
In order to reveal the complex network characteristics and evolution principle of China aviation network,the probability distribution and evolution trace of arithmetic average of edge vertices nearest neighbor average... In order to reveal the complex network characteristics and evolution principle of China aviation network,the probability distribution and evolution trace of arithmetic average of edge vertices nearest neighbor average degree values of China aviation network were studied based on the statistics data of China civil aviation network in 1988,1994,2001,2008 and 2015.According to the theory and method of complex network,the network system was constructed with the city where the airport was located as the network node and the route between cities as the edge of the network.Based on the statistical data,the arithmetic averages of edge vertices nearest neighbor average degree values of China aviation network in 1988,1994,2001,2008 and 2015 were calculated.Using the probability statistical analysis method,it was found that the arithmetic average of edge vertices nearest neighbor average degree values had the probability distribution of normal function and the position parameters and scale parameters of the probability distribution had linear evolution trace. 展开更多
关键词 Complex network China aviation network arithmetic average of edge vertices nearest neighbor average degree value linear evolution trace
下载PDF
A NEW METHOD FOR FINDING THE NATURAL FREQUENCY SET OF A LINEAR TIME-INVARIANT NETWORK
11
作者 吴雪 孙雨耕 《Transactions of Tianjin University》 EI CAS 1997年第2期28-35,共8页
This paper presents a new method for finding the natural frequency set of a linear time invariant network. In the paper deriving and proving of a common equation are described. It is for the first time that in the co... This paper presents a new method for finding the natural frequency set of a linear time invariant network. In the paper deriving and proving of a common equation are described. It is for the first time that in the common equation the natural frequencies of an n th order network are correlated with the n port parameters. The equation is simple and dual in form and clear in its physical meaning. The procedure of finding the solution is simplified and standardized, and it will not cause the loss of roots. The common equation would find wide use and be systematized. 展开更多
关键词 n th order linear time invariant networks natural frequencies n ports
下载PDF
Prediction of kiwifruit firmness using fruit mineral nutrient concentration by artificial neural network(ANN) and multiple linear regressions(MLR) 被引量:8
12
作者 Ali Mohammadi Torkashvand Abbas Ahmadi Niloofar Layegh Nikravesh 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2017年第7期1634-1644,共11页
Many properties of fruit are influenced by plant nutrition. Fruit firmness is one of the most important fruit characteristics and determines post-harvest life of the fruit, in recent decades, artificial intelligence s... Many properties of fruit are influenced by plant nutrition. Fruit firmness is one of the most important fruit characteristics and determines post-harvest life of the fruit, in recent decades, artificial intelligence systems were employed for developing predictive models to estimate and predict many agriculture processes. In the present study, the predictive capabilities of multiple linear regressions (MLR) and artificial neural networks (ANNs) are evaluated to estimate fruit firmness in six months, including each of nutrients concentrations (nitrogen (N), potassium (K), calcium (Ca) and magnesium (Mg)) alone (P1), com- bination of nutrients concentrations (P2), nutrient concentration ratios alone (P3), and combination of nutrient concentrations and nutrient concentration ratios (P4). The results showed that MLR model estimated fruit firmness more accuracy than ANN model in three datasets (P1, P2 and P4). However, the application of P3 (N/Ca ratio) as the input dataset in ANN model improved the prediction of fruit firmness than the MLR model. Correlation coefficient and root mean squared error (RMSE) were 0.850 and 0.539 between the measured and the estimated data by the ANN model, respectively. Generally, the ANN model showed greater potential in determining the relationship between 6-mon-fruit firmness and nutrients concentration. 展开更多
关键词 artificial neural network FIRMNESS FRUIT KIWI multiple linear regression NUTRIENT
下载PDF
FORCE RIPPLE SUPPRESSION TECHNOLOGY FOR LINEAR MOTORS BASED ON BACK PROPAGATION NEURAL NETWORK 被引量:7
13
作者 ZHANG Dailin CHEN Youping +2 位作者 AI Wu ZHOU Zude KONG Ching Tom 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2008年第2期13-16,共4页
Various force disturbances influence the thrust force of linear motors when a linear motor (LM) is running. Among all of force disturbances, the force ripple is the dominant while a linear motor runs in low speed. I... Various force disturbances influence the thrust force of linear motors when a linear motor (LM) is running. Among all of force disturbances, the force ripple is the dominant while a linear motor runs in low speed. In order to suppress the force ripple, back propagation(BP) neural network is proposed to learn the function of the force ripple of linear motors, and the acquisition method of training samples is proposed based on a disturbance observer. An off-line BP neural network is used mainly because of its high running efficiency and the real-time requirement of the servo control system of a linear motor. By using the function, the force ripple is on-line compensated according to the position of the LM. The experimental results show that the force ripple is effectively suppressed by the compensation of the BP neural network. 展开更多
关键词 linear motor (LM) Back propagation(BP) algorithm Neural network Anti-disturbance technology
下载PDF
Trajectory linearization control of an aerospace vehicle based on RBF neural network 被引量:6
14
作者 Xue Yali Jiang Changsheng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第4期799-805,共7页
An enhanced trajectory linearization control (TLC) structure based on radial basis function neural network (RBFNN) and its application on an aerospace vehicle (ASV) flight control system are presensted. The infl... An enhanced trajectory linearization control (TLC) structure based on radial basis function neural network (RBFNN) and its application on an aerospace vehicle (ASV) flight control system are presensted. The influence of unknown disturbances and uncertainties is reduced by RBFNN thanks to its approaching ability, and a robustifying itera is used to overcome the approximate error of RBFNN. The parameters adaptive adjusting laws are designed on the Lyapunov theory. The uniform ultimate boundedness of all signals of the composite closed-loop system is proved based on Lyapunov theory. Finally, the flight control system of an ASV is designed based on the proposed method. Simulation results demonstrate the effectiveness and robustness of the designed approach. 展开更多
关键词 adaptive control trajectory linearization control radial basis function neural network aerospace vehicle.
下载PDF
Robust fault detection for a class of nonlinear network control system with communication delay 被引量:5
15
作者 Ai Qiangyu Liu Chunsheng Jiang Bin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2009年第5期1024-1030,共7页
To investigate a class of nonlinear network control system, a robust fault diagnosis method is presented based on the robust state observer. To access the objective that the designed robust filter is maximally toleran... To investigate a class of nonlinear network control system, a robust fault diagnosis method is presented based on the robust state observer. To access the objective that the designed robust filter is maximally tolerant to disturbances and sensitive to fault, the robustness and stability properties of the fault diagnosis scheme are established rigorously. Using the residual vector, a fault tolerant controller is established in order to guarantee the stability of the closed-loop system, and the controller law can be obtained by solving a set of linear matrix inequalities. Then, some relevant sufficient conditions for the existence of a solution are given by applying Lyapunov stability theory. Finally, a simulation example is performed to show the effectiveness of the proposed approach. 展开更多
关键词 nonlinear network control systems robust fault detection OBSERVER linear matrix inequality.
下载PDF
Robust Fuzzy Tracking Control for Nonlinear Networked Control Systems with Integral Quadratic Constraints 被引量:5
16
作者 Zhi-Sheng Chen Yong He Min Wu 《International Journal of Automation and computing》 EI 2010年第4期492-499,共8页
This paper investigates the robust tracking control problcm for a class of nonlinear networked control systems (NCSs) using the Takagi-Sugeno (T-S) fuzzy model approach. Based on a time-varying delay system transf... This paper investigates the robust tracking control problcm for a class of nonlinear networked control systems (NCSs) using the Takagi-Sugeno (T-S) fuzzy model approach. Based on a time-varying delay system transformed from the NCSs, an augmented Lyapunov function containing more useful information is constructed. A less conservative sufficient condition is established such that the closed-loop systems stability and time-domain integral quadratic constraints (IQCs) are satisfied while both time-varying network- induced delays and packet losses are taken into account. The fuzzy tracking controllers design scheme is derived in terms of linear matrix inequalities (LMIs) and parallel distributed compensation (PDC). Furthermore, robust stabilization criterion for nonlinear NCSs is given as an extension of the tracking control result. Finally, numerical simulations are provided to illustrate the effectiveness and merits of the proposed method. 展开更多
关键词 Nonlinear networked control system fuzzy model robust tracking integral quadratic constraint linear matrix inequality.
下载PDF
Linearization Learning Method of BP Neural Networks 被引量:4
17
作者 Zhou Shaoqian Ding Lixin +1 位作者 Zhang Jian Tang Xinhua 《Wuhan University Journal of Natural Sciences》 CAS 1997年第1期37-41,共5页
Feedforward multi layer neural networks have very strong mapping capability that is based on the non linearity of the activation function, however, the non linearity of the activation function can cause the multiple ... Feedforward multi layer neural networks have very strong mapping capability that is based on the non linearity of the activation function, however, the non linearity of the activation function can cause the multiple local minima on the learning error surfaces, which affect the learning rate and solving optimal weights. This paper proposes a learning method linearizing non linearity of the activation function and discusses its merits and demerits theoretically. 展开更多
关键词 BP neural networks activation function linearization method
下载PDF
An Exact Virtual Network Embedding Algorithm Based on Integer Linear Programming for Virtual Network Request with Location Constraint 被引量:3
18
作者 Zeheng Yang Yongan Guo 《China Communications》 SCIE CSCD 2016年第8期177-183,共7页
Network virtualization is known as a promising technology to tackle the ossification of current Internet and will play an important role in the future network area. Virtual network embedding(VNE) is a key issue in net... Network virtualization is known as a promising technology to tackle the ossification of current Internet and will play an important role in the future network area. Virtual network embedding(VNE) is a key issue in network virtualization. VNE is NP-hard and former VNE algorithms are mostly heuristic in the literature.VNE exact algorithms have been developed in recent years. However, the constraints of exact VNE are only node capacity and link bandwidth.Based on these, this paper presents an exact VNE algorithm, ILP-LC, which is based on Integer Linear Programming(ILP), for embedding virtual network request with location constraints. This novel algorithm is aiming at mapping virtual network request(VNR) successfully as many as possible and consuming less substrate resources.The topology of each VNR is randomly generated by Waxman model. Simulation results show that the proposed ILP-LC algorithm outperforms the typical heuristic algorithms in terms of the VNR acceptance ratio, at least 15%. 展开更多
关键词 network virtualization virtual network embedding exact VNE algorithm integer linear Programming location constraint VNR acceptance ratio
下载PDF
SYNCHRONIZATION OF MASTER-SLAVE MARKOVIAN SWITCHING COMPLEX DYNAMICAL NETWORKS WITH TIME-VARYING DELAYS IN NONLINEAR FUNCTION VIA SLIDING MODE CONTROL 被引量:4
19
作者 M.Syed ALI J.YOGAMBIGAI 曹进德 《Acta Mathematica Scientia》 SCIE CSCD 2017年第2期368-384,共17页
In this article, a synchronization problem for master-slave Markovian switching complex dynamical networks with time-varying delays in nonlinear function via sliding mode control is investigated. On the basis of the a... In this article, a synchronization problem for master-slave Markovian switching complex dynamical networks with time-varying delays in nonlinear function via sliding mode control is investigated. On the basis of the appropriate Lyapunov-Krasovskii functional, introducing some free weighting matrices, new synchronization criteria are derived in terms of linear matrix inequalities (LMIs). Then, an integral sliding surface is designed to guarantee synchronization of master-slave Markovian switching complex dynamical networks, and the suitable controller is synthesized to ensure that the trajectory of the closed-loop error system can be driven onto the prescribed sliding mode surface. By using Dynkin's formula, we established the stochastic stablity of master-slave system. Finally, numerical example is provided to demonstrate the effectiveness of the obtained theoretical results. 展开更多
关键词 Markovian switching complex dynamical networks Lyapunov-Krasovskii method sliding mode control linear Matrix Inequality
下载PDF
LINEAR PROVABLE SECURITY FOR A CLASS OF UNBALANCED FEISTEL NETWORK 被引量:3
20
作者 Wang Nianping Jin Chenhui Yu Zhaoping 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2005年第4期401-406,共6页
A structure iterated by the unbalanced Feistel networks is introduced. It is showed that this structure is provable resistant against linear attack. The main result of this paper is that the upper bound of r-round (r... A structure iterated by the unbalanced Feistel networks is introduced. It is showed that this structure is provable resistant against linear attack. The main result of this paper is that the upper bound of r-round (r≥2m) linear hull probabilities are bounded by q^2 when around function F is bijective and the maximal linear hull probabilities of round function F is q. Application of this structure to block cipher designs brings out the provable security against linear attack with the upper bounds of probabilities. 展开更多
关键词 unbalanced Feistel networks provable security against linear attack linear hull probabilities upper bound.
下载PDF
上一页 1 2 217 下一页 到第
使用帮助 返回顶部