期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Adaptive Linearized Alternating Direction Method of Multipliers for Non-Convex Compositely Regularized Optimization Problems 被引量:5
1
作者 Linbo Qiao Bofeng Zhang +1 位作者 Xicheng Lu Jinshu Su 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2017年第3期328-341,共14页
We consider a wide range of non-convex regularized minimization problems, where the non-convex regularization term is composite with a linear function engaged in sparse learning. Recent theoretical investigations have... We consider a wide range of non-convex regularized minimization problems, where the non-convex regularization term is composite with a linear function engaged in sparse learning. Recent theoretical investigations have demonstrated their superiority over their convex counterparts. The computational challenge lies in the fact that the proximal mapping associated with non-convex regularization is not easily obtained due to the imposed linear composition. Fortunately, the problem structure allows one to introduce an auxiliary variable and reformulate it as an optimization problem with linear constraints, which can be solved using the Linearized Alternating Direction Method of Multipliers (LADMM). Despite the success of LADMM in practice, it remains unknown whether LADMM is convergent in solving such non-convex compositely regularized optimizations. In this research, we first present a detailed convergence analysis of the LADMM algorithm for solving a non-convex compositely regularized optimization problem with a large class of non-convex penalties. Furthermore, we propose an Adaptive LADMM (AdaLADMM) algorithm with a line-search criterion. Experimental results on different genres of datasets validate the efficacy of the proposed algorithm. 展开更多
关键词 adaptive linearized alternating direction method of multipliers non-convex compositely regularizedoptimization cappled-ll regularized logistic regression
原文传递
Weighted Compact Commutator of Bilinear Fourier Multiplier Operator 被引量:2
2
作者 Guoen HU 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2017年第3期795-814,共20页
Let T_σ be the bilinear Fourier multiplier operator with associated multiplier σ satisfying the Sobolev regularity that sup κ∈Z∥σ_κ∥W^s(R^(2n))< ∞ for some s ∈ (n, 2n]. In this paper, it is proved that th... Let T_σ be the bilinear Fourier multiplier operator with associated multiplier σ satisfying the Sobolev regularity that sup κ∈Z∥σ_κ∥W^s(R^(2n))< ∞ for some s ∈ (n, 2n]. In this paper, it is proved that the commutator generated by T_σ and CMO(R^n) functions is a compact operator from L^(p1)(R^n, w_1) × L^(p2)(R^n, w_2) to L^p(R^n, ν_w) for appropriate indices p_1, p_2, p ∈ (1, ∞) with1 p=1/ p_1 +1/ p_2 and weights w_1, w_2 such that w = (w_1, w_2) ∈ A_(p/t)(R^(2n)). 展开更多
关键词 Bilinear Fourier multiplier Commutator Bi(sub)linear maximal operator Compact operator
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部