This paper constructs a concentric ellipsoid torso-heart model by boundary element method and investigates the impacts of model structures on the cardiac magnetic fields generated by both equivalent primary source--a ...This paper constructs a concentric ellipsoid torso-heart model by boundary element method and investigates the impacts of model structures on the cardiac magnetic fields generated by both equivalent primary source--a current dipole and volume currents. Then by using the simulated magnetic fields based on torso-heart model as input, the cardiac current sources--an array of current dipoles by optimal constrained linear inverse method are constructed. Next, the current dipole array reconstruction considering boundaries is compared with that in an unbounded homogeneous medium. Furthermore, the influence of random noise on reconstruction is also considered and the reconstructing effect is judged by several reconstructing parameters.展开更多
In this paper,we present a new method for finding a fixed local-optimal policy for computing the customer lifetime value.The method is developed for a class of ergodic controllable finite Markov chains.We propose an a...In this paper,we present a new method for finding a fixed local-optimal policy for computing the customer lifetime value.The method is developed for a class of ergodic controllable finite Markov chains.We propose an approach based on a non-converging state-value function that fluctuates(increases and decreases) between states of the dynamic process.We prove that it is possible to represent that function in a recursive format using a one-step-ahead fixed-optimal policy.Then,we provide an analytical formula for the numerical realization of the fixed local-optimal strategy.We also present a second approach based on linear programming,to solve the same problem,that implement the c-variable method for making the problem computationally tractable.At the end,we show that these two approaches are related:after a finite number of iterations our proposed approach converges to same result as the linear programming method.We also present a non-traditional approach for ergodicity verification.The validity of the proposed methods is successfully demonstrated theoretically and,by simulated credit-card marketing experiments computing the customer lifetime value for both an optimization and a game theory approach.展开更多
基金Project supported by the State Key Development Program for Basic Research of China(Grant No.2006CB601007)the National Natural Science Foundation of China(Grant No.10674006)the National High Technology Research and Development Program of China(Grant No.2007AA03Z238)
文摘This paper constructs a concentric ellipsoid torso-heart model by boundary element method and investigates the impacts of model structures on the cardiac magnetic fields generated by both equivalent primary source--a current dipole and volume currents. Then by using the simulated magnetic fields based on torso-heart model as input, the cardiac current sources--an array of current dipoles by optimal constrained linear inverse method are constructed. Next, the current dipole array reconstruction considering boundaries is compared with that in an unbounded homogeneous medium. Furthermore, the influence of random noise on reconstruction is also considered and the reconstructing effect is judged by several reconstructing parameters.
文摘In this paper,we present a new method for finding a fixed local-optimal policy for computing the customer lifetime value.The method is developed for a class of ergodic controllable finite Markov chains.We propose an approach based on a non-converging state-value function that fluctuates(increases and decreases) between states of the dynamic process.We prove that it is possible to represent that function in a recursive format using a one-step-ahead fixed-optimal policy.Then,we provide an analytical formula for the numerical realization of the fixed local-optimal strategy.We also present a second approach based on linear programming,to solve the same problem,that implement the c-variable method for making the problem computationally tractable.At the end,we show that these two approaches are related:after a finite number of iterations our proposed approach converges to same result as the linear programming method.We also present a non-traditional approach for ergodicity verification.The validity of the proposed methods is successfully demonstrated theoretically and,by simulated credit-card marketing experiments computing the customer lifetime value for both an optimization and a game theory approach.