In this paper, a new approach for solving the second order nonlinear ordinary differential equation y’’ + p(x;y)y’ = G(x;y) is considered. The results obtained by this approach are illustrated by examples and show ...In this paper, a new approach for solving the second order nonlinear ordinary differential equation y’’ + p(x;y)y’ = G(x;y) is considered. The results obtained by this approach are illustrated by examples and show that this method is powerful for this type of equations.展开更多
In this paper, we discuss a new method employed to tackle non-linear partial differential equations, namely Double Elzaki Transform Decomposition Method (DETDM). This method is a combination of the Double ELzaki Trans...In this paper, we discuss a new method employed to tackle non-linear partial differential equations, namely Double Elzaki Transform Decomposition Method (DETDM). This method is a combination of the Double ELzaki Transform and Adomian Decomposition Method. This technique is hereafter provided and supported with necessary illustrations, together with some attached examples. The results reveal that the new method is very efficient, simple and can be applied to other non-linear problems.展开更多
This paper is devoted to the study of the linearization problem of system of three second-order ordinary differential equations and . The necessary conditions for linearization by general point transformation and are ...This paper is devoted to the study of the linearization problem of system of three second-order ordinary differential equations and . The necessary conditions for linearization by general point transformation and are found. The sufficient conditions for linearization by restricted class of point transformation and are obtained. Moreover, the procedure for obtaining the linearizing transformation is provided in explicit forms. Examples demonstrating the procedure of using the linearization theorems are presented.展开更多
In this paper, we prove existence and multiplicities of solutions for asymptotically linear ordinary differential equations satisfying Sturm-Liouville boundary value conditions with resonance. Adding assumption H3 tha...In this paper, we prove existence and multiplicities of solutions for asymptotically linear ordinary differential equations satisfying Sturm-Liouville boundary value conditions with resonance. Adding assumption H3 that is similar to (LL) in Theorem 1.1, by index theory and Morse theory, we obtain more nontrivial solutions.展开更多
This paper deals with the singular perturbation of the boundary value problem of the systems for quasi-linear ordinary differential equationswhere x,f, y , h, A, B and C all belong to Rn , and g is an n×n matrix ...This paper deals with the singular perturbation of the boundary value problem of the systems for quasi-linear ordinary differential equationswhere x,f, y , h, A, B and C all belong to Rn , and g is an n×n matrix function. Under suitable conditions we prove the existence of the solutions by diagonalization and the fixed point theorem and also estimate the remainder.展开更多
Nonlinear partial differetial equation(NLPDE) is converted into ordinary differential equation(ODE) via a new ansatz.Using undetermined function method,the ODE obtained above is replaced by a set of algebraic equation...Nonlinear partial differetial equation(NLPDE) is converted into ordinary differential equation(ODE) via a new ansatz.Using undetermined function method,the ODE obtained above is replaced by a set of algebraic equations which are solved out with the aid of Mathematica.The exact solutions and solitary solutions of NLPDE are obtained.展开更多
In this paper, the principle techinique of the differentiator method, and some examples using the method to obtain the general solution and special solution of the differential equation are introduced. The essential d...In this paper, the principle techinique of the differentiator method, and some examples using the method to obtain the general solution and special solution of the differential equation are introduced. The essential difference between this method and the others is that by this method special and general solutions can be obtained directly with the operations of the differentor in the differential equation and without the enlightenment of other scientific knowledge.展开更多
In this paper, combining the idea of difference method and finite element method, we construct a difference scheme for a self-adjoint problem in conservation form. Its solution uniformly converges to that of the origi...In this paper, combining the idea of difference method and finite element method, we construct a difference scheme for a self-adjoint problem in conservation form. Its solution uniformly converges to that of the original differential equation problem with order h3.展开更多
A neural network(NN) is a powerful tool for approximating bounded continuous functions in machine learning. The NN provides a framework for numerically solving ordinary differential equations(ODEs) and partial differe...A neural network(NN) is a powerful tool for approximating bounded continuous functions in machine learning. The NN provides a framework for numerically solving ordinary differential equations(ODEs) and partial differential equations(PDEs)combined with the automatic differentiation(AD) technique. In this work, we explore the use of NN for the function approximation and propose a universal solver for ODEs and PDEs. The solver is tested for initial value problems and boundary value problems of ODEs, and the results exhibit high accuracy for not only the unknown functions but also their derivatives. The same strategy can be used to construct a PDE solver based on collocation points instead of a mesh, which is tested with the Burgers equation and the heat equation(i.e., the Laplace equation).展开更多
In this paper, we give some sufficient conditions of the instability for the fourth order linear differential equation with varied coefficient, at least one of the characteristic roots of which has positive real part,...In this paper, we give some sufficient conditions of the instability for the fourth order linear differential equation with varied coefficient, at least one of the characteristic roots of which has positive real part, by means of Liapunov's second method.展开更多
The Emden differential equation is one of the most widely studied and challenging nonlinear dynamics equations in literature. It finds applications in various areas of study such as celestial mechanics, fluid mechanic...The Emden differential equation is one of the most widely studied and challenging nonlinear dynamics equations in literature. It finds applications in various areas of study such as celestial mechanics, fluid mechanics, Steller structure, isothermal gas spheres, thermionic currents and so on. Because of the importance of the equation, the method of generalized Sundman transformation (GST) as proposed by Nakpim and Meleshko is used for linearizing the Emden differential equation. The Emden differential equation considered here is a modification of the equation given by Berkovic. The results obtained in this paper imply that the Emden equation cannot be linearized by a point transformation. The general solution of the modified Emden equation is also obtained.展开更多
This paper focuses on linear-quadratic(LQ)optimal control for a class of systems governed by first-order hyperbolic partial differential equations(PDEs).Different from most of the previous works,an approach of discret...This paper focuses on linear-quadratic(LQ)optimal control for a class of systems governed by first-order hyperbolic partial differential equations(PDEs).Different from most of the previous works,an approach of discretization-then-continuousization is proposed in this paper to cope with the infinite-dimensional nature of PDE systems.The contributions of this paper consist of the following aspects:(1)The differential Riccati equations and the solvability condition of the LQ optimal control problems are obtained via the discretization-then-continuousization method.(2)A numerical calculation way of the differential Riccati equations and a practical design way of the optimal controller are proposed.Meanwhile,the relationship between the optimal costate and the optimal state is established by solving a set of forward and backward partial difference equations(FBPDEs).(3)The correctness of the method used in this paper is verified by a complementary continuous method and the comparative analysis with the existing operator results is presented.It is shown that the proposed results not only contain the classic results of the standard LQ control problem of systems governed by ordinary differential equations as a special case,but also support the existing operator results and give a more convenient form of computation.展开更多
In this paper the authors study a class of non-linear singular partial differential equation in complex domain C-t x C-x(n). Under certain assumptions, they prove the existence and uniqueness of holomorphic solution n...In this paper the authors study a class of non-linear singular partial differential equation in complex domain C-t x C-x(n). Under certain assumptions, they prove the existence and uniqueness of holomorphic solution near origin of C-t x C-x(n).展开更多
We first define a kind of new function space, called the space of twice conormal distributions. With some estimates on these function spaces, we can prove that if there exist two characteristic hypersurfaces bearing s...We first define a kind of new function space, called the space of twice conormal distributions. With some estimates on these function spaces, we can prove that if there exist two characteristic hypersurfaces bearing strong and weak singularities respectively intersect transversally, then some new singularities will take place anti their strength will be no more than the original weak one.展开更多
This paper presents a method to solve the problems of solutions for integer differential and partial differential equations using the convergence of Adomian's Method. In this paper, we firstly use the convergence ...This paper presents a method to solve the problems of solutions for integer differential and partial differential equations using the convergence of Adomian's Method. In this paper, we firstly use the convergence of Adomian's Method to derive the solutions of high order linear fractional equations, and then the numerical solutions for nonlinear fractional equations. we also get the solutions of two fractional reaction-diffusion equations.We can see the advantage of this method to deal with fractional differential equations.展开更多
Lagrange's variation-of-constants method for solving linear inhomogeneous ordinary differential equations (ode's) is replaced by a method based on the Loewy decomposition of the corresponding homogeneous equation....Lagrange's variation-of-constants method for solving linear inhomogeneous ordinary differential equations (ode's) is replaced by a method based on the Loewy decomposition of the corresponding homogeneous equation. It uses only properties of the equations and not of its solutions. As a consequence it has the advantage that it may be generalized for partial differential equations (pde's). It is applied to equations of second order in two independent variables, and to a certain system of third-order pde's. Therewith all possible linear inhomogeneous pde's are covered that may occur when third-order linear homogeneous pde's in two independent variables are solved.展开更多
In this paper we have discussed solution and stability analysis of ordinary and partial differential equation with boundary value problem.We investigated periodic stability in Eulers scheme and also discussed PDEs by ...In this paper we have discussed solution and stability analysis of ordinary and partial differential equation with boundary value problem.We investigated periodic stability in Eulers scheme and also discussed PDEs by finite difference scheme.Numerical example has been discussed finding nature of stability.All given result more accurate other than existing methods.展开更多
We establish new Kamenev-type oscillation criteria for the half-linear partial differential equation with damping div(A(x)|| u||^p-2 u)+〈b(x),|| u||^p-2 u〉+c(x)|u|^p-2u=0(E)under quite general ...We establish new Kamenev-type oscillation criteria for the half-linear partial differential equation with damping div(A(x)|| u||^p-2 u)+〈b(x),|| u||^p-2 u〉+c(x)|u|^p-2u=0(E)under quite general conditions. These results are extensions of the recent results developed by Sun [Y.C. Sun, New Kamenev-type oscillation criteria of second order nonlinear differential equations with damping, J. Math. Anal. Appl. 291 (2004) 341-351] for second order ordinary differential equations in a natural way, and improve some existing results in the literature. As applications, we illustrate our main results using two different types of half-linear partial differential equations.展开更多
Hessian matrices are square matrices consisting of all possible combinations of second partial derivatives of a scalar-valued initial function. As such, Hessian matrices may be treated as elementary matrix systems of ...Hessian matrices are square matrices consisting of all possible combinations of second partial derivatives of a scalar-valued initial function. As such, Hessian matrices may be treated as elementary matrix systems of linear second-order partial differential equations. This paper discusses the Hessian and its applications in optimization, and then proceeds to introduce and derive the notion of the Jaffa Transform, a new linear operator that directly maps a Hessian square matrix space to the initial corresponding scalar field in nth dimensional Euclidean space. The Jaffa Transform is examined, including the properties of the operator, the transform of notable matrices, and the existence of an inverse Jaffa Transform, which is, by definition, the Hessian matrix operator. The Laplace equation is then noted and investigated, particularly, the relation of the Laplace equation to Poisson’s equation, and the theoretical applications and correlations of harmonic functions to Hessian matrices. The paper concludes by introducing and explicating the Jaffa Theorem, a principle that declares the existence of harmonic Jaffa Transforms, which are, essentially, Jaffa Transform solutions to the Laplace partial differential equation.展开更多
An alternative method of solving Lagrange's first-order partial differential equation of the form(a1x +b1y+C1z)p+ (a2x +b2y+c2z)q =a3x +b3y+c3z,where p = Эz/Эx, q = Эz/Эy and ai, bi, ci (i = 1,2,3) a...An alternative method of solving Lagrange's first-order partial differential equation of the form(a1x +b1y+C1z)p+ (a2x +b2y+c2z)q =a3x +b3y+c3z,where p = Эz/Эx, q = Эz/Эy and ai, bi, ci (i = 1,2,3) are all real numbers has been presented here.展开更多
文摘In this paper, a new approach for solving the second order nonlinear ordinary differential equation y’’ + p(x;y)y’ = G(x;y) is considered. The results obtained by this approach are illustrated by examples and show that this method is powerful for this type of equations.
文摘In this paper, we discuss a new method employed to tackle non-linear partial differential equations, namely Double Elzaki Transform Decomposition Method (DETDM). This method is a combination of the Double ELzaki Transform and Adomian Decomposition Method. This technique is hereafter provided and supported with necessary illustrations, together with some attached examples. The results reveal that the new method is very efficient, simple and can be applied to other non-linear problems.
文摘This paper is devoted to the study of the linearization problem of system of three second-order ordinary differential equations and . The necessary conditions for linearization by general point transformation and are found. The sufficient conditions for linearization by restricted class of point transformation and are obtained. Moreover, the procedure for obtaining the linearizing transformation is provided in explicit forms. Examples demonstrating the procedure of using the linearization theorems are presented.
文摘In this paper, we prove existence and multiplicities of solutions for asymptotically linear ordinary differential equations satisfying Sturm-Liouville boundary value conditions with resonance. Adding assumption H3 that is similar to (LL) in Theorem 1.1, by index theory and Morse theory, we obtain more nontrivial solutions.
文摘This paper deals with the singular perturbation of the boundary value problem of the systems for quasi-linear ordinary differential equationswhere x,f, y , h, A, B and C all belong to Rn , and g is an n×n matrix function. Under suitable conditions we prove the existence of the solutions by diagonalization and the fixed point theorem and also estimate the remainder.
基金Supported by the Natural Science Foundation of Zhejiang Province(1 0 2 0 3 7)
文摘Nonlinear partial differetial equation(NLPDE) is converted into ordinary differential equation(ODE) via a new ansatz.Using undetermined function method,the ODE obtained above is replaced by a set of algebraic equations which are solved out with the aid of Mathematica.The exact solutions and solitary solutions of NLPDE are obtained.
文摘In this paper, the principle techinique of the differentiator method, and some examples using the method to obtain the general solution and special solution of the differential equation are introduced. The essential difference between this method and the others is that by this method special and general solutions can be obtained directly with the operations of the differentor in the differential equation and without the enlightenment of other scientific knowledge.
文摘In this paper, combining the idea of difference method and finite element method, we construct a difference scheme for a self-adjoint problem in conservation form. Its solution uniformly converges to that of the original differential equation problem with order h3.
基金Project supported by the National Natural Science Foundation of China(No.11521091)
文摘A neural network(NN) is a powerful tool for approximating bounded continuous functions in machine learning. The NN provides a framework for numerically solving ordinary differential equations(ODEs) and partial differential equations(PDEs)combined with the automatic differentiation(AD) technique. In this work, we explore the use of NN for the function approximation and propose a universal solver for ODEs and PDEs. The solver is tested for initial value problems and boundary value problems of ODEs, and the results exhibit high accuracy for not only the unknown functions but also their derivatives. The same strategy can be used to construct a PDE solver based on collocation points instead of a mesh, which is tested with the Burgers equation and the heat equation(i.e., the Laplace equation).
基金Provincial Science and Technology Foundation of Guizhou
文摘In this paper, we give some sufficient conditions of the instability for the fourth order linear differential equation with varied coefficient, at least one of the characteristic roots of which has positive real part, by means of Liapunov's second method.
文摘The Emden differential equation is one of the most widely studied and challenging nonlinear dynamics equations in literature. It finds applications in various areas of study such as celestial mechanics, fluid mechanics, Steller structure, isothermal gas spheres, thermionic currents and so on. Because of the importance of the equation, the method of generalized Sundman transformation (GST) as proposed by Nakpim and Meleshko is used for linearizing the Emden differential equation. The Emden differential equation considered here is a modification of the equation given by Berkovic. The results obtained in this paper imply that the Emden equation cannot be linearized by a point transformation. The general solution of the modified Emden equation is also obtained.
基金supported by the National Natural Science Foundation of China under Grant Nos.61821004 and 62250056the Natural Science Foundation of Shandong Province under Grant Nos.ZR2021ZD14 and ZR2021JQ24+1 种基金Science and Technology Project of Qingdao West Coast New Area under Grant Nos.2019-32,2020-20,2020-1-4,High-level Talent Team Project of Qingdao West Coast New Area under Grant No.RCTDJC-2019-05Key Research and Development Program of Shandong Province under Grant No.2020CXGC01208.
文摘This paper focuses on linear-quadratic(LQ)optimal control for a class of systems governed by first-order hyperbolic partial differential equations(PDEs).Different from most of the previous works,an approach of discretization-then-continuousization is proposed in this paper to cope with the infinite-dimensional nature of PDE systems.The contributions of this paper consist of the following aspects:(1)The differential Riccati equations and the solvability condition of the LQ optimal control problems are obtained via the discretization-then-continuousization method.(2)A numerical calculation way of the differential Riccati equations and a practical design way of the optimal controller are proposed.Meanwhile,the relationship between the optimal costate and the optimal state is established by solving a set of forward and backward partial difference equations(FBPDEs).(3)The correctness of the method used in this paper is verified by a complementary continuous method and the comparative analysis with the existing operator results is presented.It is shown that the proposed results not only contain the classic results of the standard LQ control problem of systems governed by ordinary differential equations as a special case,but also support the existing operator results and give a more convenient form of computation.
文摘In this paper the authors study a class of non-linear singular partial differential equation in complex domain C-t x C-x(n). Under certain assumptions, they prove the existence and uniqueness of holomorphic solution near origin of C-t x C-x(n).
文摘We first define a kind of new function space, called the space of twice conormal distributions. With some estimates on these function spaces, we can prove that if there exist two characteristic hypersurfaces bearing strong and weak singularities respectively intersect transversally, then some new singularities will take place anti their strength will be no more than the original weak one.
基金the National Natural Science Foundation of China(Nos.11601003,11371027)Natural Science Research Project of Colleges of Anhui Province(No.KJ2016A023)+1 种基金Natural Science Foundation of Anhui Province(No.1508085MA01)College Students’Scientific Research Training Plan of Anhui University(No.KYXL2014006)
文摘This paper presents a method to solve the problems of solutions for integer differential and partial differential equations using the convergence of Adomian's Method. In this paper, we firstly use the convergence of Adomian's Method to derive the solutions of high order linear fractional equations, and then the numerical solutions for nonlinear fractional equations. we also get the solutions of two fractional reaction-diffusion equations.We can see the advantage of this method to deal with fractional differential equations.
文摘Lagrange's variation-of-constants method for solving linear inhomogeneous ordinary differential equations (ode's) is replaced by a method based on the Loewy decomposition of the corresponding homogeneous equation. It uses only properties of the equations and not of its solutions. As a consequence it has the advantage that it may be generalized for partial differential equations (pde's). It is applied to equations of second order in two independent variables, and to a certain system of third-order pde's. Therewith all possible linear inhomogeneous pde's are covered that may occur when third-order linear homogeneous pde's in two independent variables are solved.
文摘In this paper we have discussed solution and stability analysis of ordinary and partial differential equation with boundary value problem.We investigated periodic stability in Eulers scheme and also discussed PDEs by finite difference scheme.Numerical example has been discussed finding nature of stability.All given result more accurate other than existing methods.
基金Supported by the National Natural Science Foundation of Guangdong Province under Grant (No.8451063101000730)
文摘We establish new Kamenev-type oscillation criteria for the half-linear partial differential equation with damping div(A(x)|| u||^p-2 u)+〈b(x),|| u||^p-2 u〉+c(x)|u|^p-2u=0(E)under quite general conditions. These results are extensions of the recent results developed by Sun [Y.C. Sun, New Kamenev-type oscillation criteria of second order nonlinear differential equations with damping, J. Math. Anal. Appl. 291 (2004) 341-351] for second order ordinary differential equations in a natural way, and improve some existing results in the literature. As applications, we illustrate our main results using two different types of half-linear partial differential equations.
文摘Hessian matrices are square matrices consisting of all possible combinations of second partial derivatives of a scalar-valued initial function. As such, Hessian matrices may be treated as elementary matrix systems of linear second-order partial differential equations. This paper discusses the Hessian and its applications in optimization, and then proceeds to introduce and derive the notion of the Jaffa Transform, a new linear operator that directly maps a Hessian square matrix space to the initial corresponding scalar field in nth dimensional Euclidean space. The Jaffa Transform is examined, including the properties of the operator, the transform of notable matrices, and the existence of an inverse Jaffa Transform, which is, by definition, the Hessian matrix operator. The Laplace equation is then noted and investigated, particularly, the relation of the Laplace equation to Poisson’s equation, and the theoretical applications and correlations of harmonic functions to Hessian matrices. The paper concludes by introducing and explicating the Jaffa Theorem, a principle that declares the existence of harmonic Jaffa Transforms, which are, essentially, Jaffa Transform solutions to the Laplace partial differential equation.
文摘An alternative method of solving Lagrange's first-order partial differential equation of the form(a1x +b1y+C1z)p+ (a2x +b2y+c2z)q =a3x +b3y+c3z,where p = Эz/Эx, q = Эz/Эy and ai, bi, ci (i = 1,2,3) are all real numbers has been presented here.