A tubular moving-magnet linear oscillating motor(TMMLOM) has merits of high efficiency and excellent dynamic capability. To enhance the thrust performance, quasi-Halbach permanent magnet(PM) arrays are arranged on...A tubular moving-magnet linear oscillating motor(TMMLOM) has merits of high efficiency and excellent dynamic capability. To enhance the thrust performance, quasi-Halbach permanent magnet(PM) arrays are arranged on its mover in the application of a linear electro-hydrostatic actuator in more electric aircraft. The arrays are assembled by several individual segments, which lead to gaps between them inevitably. To investigate the effects of the gaps on the radial magnetic flux density and the machine thrust in this paper, an analytical model is built considering both axial and radial gaps. The model is validated by finite element simulations and experimental results.Distributions of the magnetic flux are described in condition of different sizes of radial and axial gaps. Besides, the output force is also discussed in normal and end windings. Finally, the model has demonstrated that both kinds of gaps have a negative effect on the thrust, and the linear motor is more sensitive to radial ones.展开更多
In this paper, using axial field finite analysis method, the field of a movable core type linear oscillation motor is analyzed. The program of axial field finite analysis is worked out. Using this program, we analyze ...In this paper, using axial field finite analysis method, the field of a movable core type linear oscillation motor is analyzed. The program of axial field finite analysis is worked out. Using this program, we analyze various fields, including the field excited by permanent magnet materials, the field by two coils respectively, and the fields with the core moving to various positions.展开更多
To optimize the efficiency of the linear compressor,its operating frequency must be controlled equal to the system resonant frequency.The traditional resonant frequency tracking control algorithm relies on the steady ...To optimize the efficiency of the linear compressor,its operating frequency must be controlled equal to the system resonant frequency.The traditional resonant frequency tracking control algorithm relies on the steady state characteristics of the system,which suffers from slow convergence speed,low accuracy and slow system response.In order to solve these problems,a novel resonant frequency tracking control for linear compressor based on model reference adaptive system(MRAS)is proposed in this paper,and the parameter adaptive rate is derived by the Popov's hyperstability theory,so that the system resonant frequency can be directly calculated through the parameter adaptive rate.Furthermore,the traditional algorithm needs to calculate the piston stroke signal by integrating the back-EMF,which has the problem of integral drift.The algorithm proposed in this paper only needs the velocity signal,and the accuracy of the velocity calculation can be ensured by utilizing the self-adaptive band-pass filter(SABPF),thereby greatly improving the accuracy of the resonance frequency calculation.Simulation results verify the effectiveness of the proposed algorithm.展开更多
基金supports of National Basic Research Program of China(973 Program)(No.2014CB046402)National Natural Science Foundation of China(Nos.51620105010,51575019,51675019,51505015)111 Program of China
文摘A tubular moving-magnet linear oscillating motor(TMMLOM) has merits of high efficiency and excellent dynamic capability. To enhance the thrust performance, quasi-Halbach permanent magnet(PM) arrays are arranged on its mover in the application of a linear electro-hydrostatic actuator in more electric aircraft. The arrays are assembled by several individual segments, which lead to gaps between them inevitably. To investigate the effects of the gaps on the radial magnetic flux density and the machine thrust in this paper, an analytical model is built considering both axial and radial gaps. The model is validated by finite element simulations and experimental results.Distributions of the magnetic flux are described in condition of different sizes of radial and axial gaps. Besides, the output force is also discussed in normal and end windings. Finally, the model has demonstrated that both kinds of gaps have a negative effect on the thrust, and the linear motor is more sensitive to radial ones.
文摘In this paper, using axial field finite analysis method, the field of a movable core type linear oscillation motor is analyzed. The program of axial field finite analysis is worked out. Using this program, we analyze various fields, including the field excited by permanent magnet materials, the field by two coils respectively, and the fields with the core moving to various positions.
基金supported in part by the National Natural Science Foundation of China under Grants 51877093 and 51707079in part by the National Key Research and Development Program of China under Grant 2018YFE0100200in part by the Key Technical Innovation Program of Hubei Province under Grant 2019AAA026.
文摘To optimize the efficiency of the linear compressor,its operating frequency must be controlled equal to the system resonant frequency.The traditional resonant frequency tracking control algorithm relies on the steady state characteristics of the system,which suffers from slow convergence speed,low accuracy and slow system response.In order to solve these problems,a novel resonant frequency tracking control for linear compressor based on model reference adaptive system(MRAS)is proposed in this paper,and the parameter adaptive rate is derived by the Popov's hyperstability theory,so that the system resonant frequency can be directly calculated through the parameter adaptive rate.Furthermore,the traditional algorithm needs to calculate the piston stroke signal by integrating the back-EMF,which has the problem of integral drift.The algorithm proposed in this paper only needs the velocity signal,and the accuracy of the velocity calculation can be ensured by utilizing the self-adaptive band-pass filter(SABPF),thereby greatly improving the accuracy of the resonance frequency calculation.Simulation results verify the effectiveness of the proposed algorithm.