This paper focuses on synthesizing a mixed robust H_2/H_∞ linear parameter varying(LPV) controller for the longitudinal motion of an air-breathing hypersonic vehicle via a high order singular value decomposition(H...This paper focuses on synthesizing a mixed robust H_2/H_∞ linear parameter varying(LPV) controller for the longitudinal motion of an air-breathing hypersonic vehicle via a high order singular value decomposition(HOSVD) approach.The design of hypersonic flight control systems is highly challenging due to the enormous complexity of the vehicle dynamics and the presence of significant uncertainties.Motivated by recent results on both LPV control and tensor-product(TP) model transformation approach,the velocity and altitude tracking control problems for the air-breathing hypersonic vehicle is reduced to that of a state feedback stabilizing controller design for a polytopic LPV system with guaranteed performances.The controller implementation is converted into a convex optimization problem with parameterdependent linear matrix inequalities(LMIs) constraints,which is intuitively tractable using LMI control toolbox.Finally,numerical simulation results demonstrate the effectiveness of the proposed approach.展开更多
This paper focuses on the H_∞ model reference tracking control for a switched linear parameter-varying(LPV)model representing an aero-engine. The switched LPV aeroengine model is built based on a family of linearized...This paper focuses on the H_∞ model reference tracking control for a switched linear parameter-varying(LPV)model representing an aero-engine. The switched LPV aeroengine model is built based on a family of linearized models.Multiple parameter-dependent Lyapunov functions technique is used to design a tracking control law for the desirable H_∞ tracking performance. A control synthesis condition is formulated in terms of the solvability of a matrix optimization problem.Simulation result on the aero-engine model shows the feasibility and validity of the switching tracking control scheme.展开更多
For constrained linear parameter varying(LPV)systems,this survey comprehensively reviews the literatures on output feedback robust model predictive control(OFRMPC)over the past two decades from the aspects on motivati...For constrained linear parameter varying(LPV)systems,this survey comprehensively reviews the literatures on output feedback robust model predictive control(OFRMPC)over the past two decades from the aspects on motivations,main contributions,and the related techniques.According to the types of state observer systems and scheduling parameters of LPV systems,different kinds of OFRMPC approaches are summarized and compared.The extensions of OFRMPC for LPV systems to other related uncertain systems are also investigated.The methods of dealing with system uncertainties and constraints in different kinds of OFRMPC optimizations are given.Key issues on OFRMPC optimizations for LPV systems are discussed.Furthermore,the future research directions on OFRMPC for LPV systems are suggested.展开更多
This paper proposes an effective algorithm to work out the linear parameter-varying (LPV) framework autopilot for the air defense missile so as to simultaneously guarantee the closed-loop system properties globally an...This paper proposes an effective algorithm to work out the linear parameter-varying (LPV) framework autopilot for the air defense missile so as to simultaneously guarantee the closed-loop system properties globally and locally, which evidently reduces the number of unknown variables and hence increases the computational efficiency. The notion of 'robust quadratic stability' is inducted to meet the global properties, including the robust stability and robust performance, while the regional pole placement scheme together with the adoption of a model matching structure is involved to satisfy the dynamic performance, including limiting the 'fast poles'. In order to reduce the conservatism, the full block multiplier is employed to depict the properties, with all specifications generalized in integral quadratic constraint frame and finally transformed into linear matrix inequalities for tractable solutions through convex optimization. Simulation results validate the performance of the designed robust LPV autopilot and the proposed framework control method integrating with the full block multiplier approach and the regional pole placement scheme, and demonstrate the efficiency of the algorithm. An efficient algorithm for the air defense missile is proposed to satisfy the required global stability and local dynamical properties by a varying controller according to the flight conditions, and shows sufficient promise in the computational efficiency and the real-time performance of the missile-borne computer system.展开更多
基金supported by the National Natural Science Foundation of China(6120300761304239+1 种基金61503392)the Natural Science Foundation of Shaanxi Province(2015JQ6213)
文摘This paper focuses on synthesizing a mixed robust H_2/H_∞ linear parameter varying(LPV) controller for the longitudinal motion of an air-breathing hypersonic vehicle via a high order singular value decomposition(HOSVD) approach.The design of hypersonic flight control systems is highly challenging due to the enormous complexity of the vehicle dynamics and the presence of significant uncertainties.Motivated by recent results on both LPV control and tensor-product(TP) model transformation approach,the velocity and altitude tracking control problems for the air-breathing hypersonic vehicle is reduced to that of a state feedback stabilizing controller design for a polytopic LPV system with guaranteed performances.The controller implementation is converted into a convex optimization problem with parameterdependent linear matrix inequalities(LMIs) constraints,which is intuitively tractable using LMI control toolbox.Finally,numerical simulation results demonstrate the effectiveness of the proposed approach.
基金supported by the National Natural Science Foundation of China(61304058,61233002)IAPI Fundamental Research Funds(2013ZCX03-01)
文摘This paper focuses on the H_∞ model reference tracking control for a switched linear parameter-varying(LPV)model representing an aero-engine. The switched LPV aeroengine model is built based on a family of linearized models.Multiple parameter-dependent Lyapunov functions technique is used to design a tracking control law for the desirable H_∞ tracking performance. A control synthesis condition is formulated in terms of the solvability of a matrix optimization problem.Simulation result on the aero-engine model shows the feasibility and validity of the switching tracking control scheme.
基金supported in part by the National Natural Science Foundation of China(62103319,62073053,61773396)。
文摘For constrained linear parameter varying(LPV)systems,this survey comprehensively reviews the literatures on output feedback robust model predictive control(OFRMPC)over the past two decades from the aspects on motivations,main contributions,and the related techniques.According to the types of state observer systems and scheduling parameters of LPV systems,different kinds of OFRMPC approaches are summarized and compared.The extensions of OFRMPC for LPV systems to other related uncertain systems are also investigated.The methods of dealing with system uncertainties and constraints in different kinds of OFRMPC optimizations are given.Key issues on OFRMPC optimizations for LPV systems are discussed.Furthermore,the future research directions on OFRMPC for LPV systems are suggested.
基金supported by the National Natural Science Foundation of China(11532002)
文摘This paper proposes an effective algorithm to work out the linear parameter-varying (LPV) framework autopilot for the air defense missile so as to simultaneously guarantee the closed-loop system properties globally and locally, which evidently reduces the number of unknown variables and hence increases the computational efficiency. The notion of 'robust quadratic stability' is inducted to meet the global properties, including the robust stability and robust performance, while the regional pole placement scheme together with the adoption of a model matching structure is involved to satisfy the dynamic performance, including limiting the 'fast poles'. In order to reduce the conservatism, the full block multiplier is employed to depict the properties, with all specifications generalized in integral quadratic constraint frame and finally transformed into linear matrix inequalities for tractable solutions through convex optimization. Simulation results validate the performance of the designed robust LPV autopilot and the proposed framework control method integrating with the full block multiplier approach and the regional pole placement scheme, and demonstrate the efficiency of the algorithm. An efficient algorithm for the air defense missile is proposed to satisfy the required global stability and local dynamical properties by a varying controller according to the flight conditions, and shows sufficient promise in the computational efficiency and the real-time performance of the missile-borne computer system.