Perpendicular optical reversal of the linear dichroism transition has promising applications in polarization-sensitive optoelectronic devices. We perform a systematical study on the in-plane optical anisotropy of quas...Perpendicular optical reversal of the linear dichroism transition has promising applications in polarization-sensitive optoelectronic devices. We perform a systematical study on the in-plane optical anisotropy of quasi-one-dimensional PdBr_(2) by using combined measurements of the angle-resolved polarized Raman spectroscopy(ARPRS) and anisotropic optical absorption spectrum. The analyses of ARPRS data validate the anisotropic Raman properties of the PdBr_(2) flake.And anisotropic optical absorption spectrum of PdBr_(2) nanoflake demonstrates distinct optical linear dichroism reversal. Photodetector constructed by PdBr_(2) nanowire exhibits high responsivity of 747 A·W^(-1) and specific detectivity of 5.8×10^(12) Jones. And the photodetector demonstrates prominent polarization-sensitive photoresponsivity under 405-nm light irradiation with large photocurrent anisotropy ratio of 1.56, which is superior to those of most of previously reported quasi-one-dimensional counterparts. Our study offers fundamental insights into the strong optical anisotropy exhibited by PdBr_(2), establishing it as a promising candidate for miniaturization and integration trends of polarization-related applications.展开更多
Purpose To propose a method for simultaneous fluorescence and Compton scattering computed tomography by using linearly polarized X-rays.Methods Monte Carlo simulations were adopted to demonstrate the feasibility of th...Purpose To propose a method for simultaneous fluorescence and Compton scattering computed tomography by using linearly polarized X-rays.Methods Monte Carlo simulations were adopted to demonstrate the feasibility of the proposed method.In the simulations,the phantom is a polytetrafluoroethylene cylinder inside which are cylindrical columns containing aluminum,water,and gold(Au)-loaded water solutions with Au concentrations ranging between 0.5 and 4.0 wt%,and a parallel-hole collimator imaging geometry was adopted.The light source was modeled based on a Thomson scattering X-ray source.The phantom images for both imaging modalities were reconstructed using a maximumlikelihood expectation maximization algorithm.Results Both the X-ray fluorescence computed tomography(XFCT)and Compton scattering computed tomography(CSCT)images of the phantom were accurately reconstructed.A similar attenuation contrast problem for the different cylindrical columns in the phantom can be resolved in the XFCT and CSCT images.The interplay between XFCT and CSCT was analyzed,and the contrast-to-noise ratio(CNR)of the reconstruction was improved by correcting for the mutual influence between the two imaging modalities.Compared with K-edge subtraction imaging,XFCT exhibits a CNR advantage for the phantom.Conclusion Simultaneous XFCT and CSCT can be realized by using linearly polarized X-rays.The synergy between the two imaging modalities would have an important application in cancer radiation therapy.展开更多
A linear array of diversely polarized antennas with one pair of identical sensors is used to obtain closed-form unambiguous estimation of 2-D direction of arrival (DOA) and polarization. Spatial phase information to...A linear array of diversely polarized antennas with one pair of identical sensors is used to obtain closed-form unambiguous estimation of 2-D direction of arrival (DOA) and polarization. Spatial phase information together with weighted 3-D polarization-angular coherence structure (PACS) are first recovered with fourth-order cumulants manipulation via a new 2-D ESPRIT variant. Spatial filtering is performed to obtain the scaled PACS, from which the closed-form 2-D DOA and polarization estimates can be derived with only quadrant ambiguity involved. The undesired quadrant ambiguity can be further resolved by using the acquired estimate of spatial phase factor.展开更多
Single-photon entanglement(SPE) is an important source in quantum communication. In this paper, we put forward a single-photon-assisted noiseless linear amplification protocol to protect the SPE of an arbitrary polari...Single-photon entanglement(SPE) is an important source in quantum communication. In this paper, we put forward a single-photon-assisted noiseless linear amplification protocol to protect the SPE of an arbitrary polarization–time-bin qudit from the photon transmission loss caused by the practical channel noise. After the amplification, the fidelity of the SPE can be effectively increased. Meanwhile, the encoded polarization–time-bin features of the qudit can be well preserved. The protocol can be realized under the current experimental conditions. Moreover, the amplification protocol can be extended to resist complete photon loss and partial photon loss during the photon transmission. After the amplification, we can not only increase the fidelity of the target state, but also solve the decoherence problem simultaneously. Based on the above features, our amplification protocol may be useful in future quantum communication.展开更多
Polarization holography is a newly researched field,that has gained traction with the development of tensor theory.It primarily focuses on the interaction between polarization waves and photosensitive materials.The ex...Polarization holography is a newly researched field,that has gained traction with the development of tensor theory.It primarily focuses on the interaction between polarization waves and photosensitive materials.The extraordinary capabil-ities in modulating the amplitude,phase,and polarization of light have resulted in several new applications,such as holo-graphic storage technology,multichannel polarization multiplexing,vector beams,and optical functional devices.In this paper,fundamental research on polarization holography with linear polarized wave,a component of the theory of polariz-ation holography,has been reviewed.Primarily,the effect of various polarization changes on the linear and nonlinear po-larization characteristics of reconstructed wave under continuous exposure and during holographic recording and recon-struction have been focused upon.The polarization modulation realized using these polarization characteristics exhibits unusual functionalities,rendering polarization holography as an attractive research topic in many fields of applications.This paper aims to provide readers with new insights and broaden the application of polarization holography in more sci-entific and technological research fields.展开更多
A theoretical model of quasi-three-level laser system is developed, in which both the thermally induced depolarization loss and the effect of energy-transfer upconversion are taken into account. Based on the theoretic...A theoretical model of quasi-three-level laser system is developed, in which both the thermally induced depolarization loss and the effect of energy-transfer upconversion are taken into account. Based on the theoretical investigation of the influences of output transmission and incident pump power on thermally induced depolarization loss, the output performance of 946 nm linearly polarized Nd:YAG laser is experimentally studied. By optimizing the transmission of output coupler, a 946 nm linearly polarized continuous-wave single-transverse-mode laser with an output power of 4.2 W and an optical-optical conversion efficiency of 16.8% is obtained, and the measured beam quality factors are M2 = 1.13 and My2 = 1.21. The theoretical prediction is in good agreement with the experimental result.展开更多
Fluorescence polarization is related to the dipole orientation of chromophores,making fuores-cence polarization microscopy possible to_reveal structures and functions of tagged cellularorganelles and biological macrom...Fluorescence polarization is related to the dipole orientation of chromophores,making fuores-cence polarization microscopy possible to_reveal structures and functions of tagged cellularorganelles and biological macromolecules.Several recent super resolution techniques have beenapplied to fluorescence polarization microscopy,achieving dipole measurement at nanoscale.In this review,we summarize both difraction limited and super resolution fluorescence polari-zation microscopy techniques,as well as their applications in biological imaging.展开更多
The two-color circularly polarized pulses scheme was proposed to generate isolated attosecond pulses in our previous work [Phys. Rev. A 87 (2013) 043406], while the polarization of the attosecond pulse was not inves...The two-color circularly polarized pulses scheme was proposed to generate isolated attosecond pulses in our previous work [Phys. Rev. A 87 (2013) 043406], while the polarization of the attosecond pulse was not investigated. We show a supplementary explanation of this scheme and present another scheme to generate linear isolated attosecond pulses by combining a circularly polarized pulse with an elliptically polarized pulse. High-order harmonic generation and quantum path control are investigated to compare these two schemes. Both schemes can obtain supercontinuum spectra plateau from about 200eV to 550eV, which belong to the water window region. It is found that the latter scheme can clearly eliminate the short quantum path and extend the harmonic plateau. A linear isolated attosecond pulse with a duration of sub-6Oas can be generated by superposing a bandwidth of 70eV.展开更多
Electronic absorption bands of conjugated linear carbon chain molecules, namely polyynes H(C≡C)nH (n=5-7), are exploited to devise light-polarizing films applicable to the UV. Laser ablated polyynes are separated in ...Electronic absorption bands of conjugated linear carbon chain molecules, namely polyynes H(C≡C)nH (n=5-7), are exploited to devise light-polarizing films applicable to the UV. Laser ablated polyynes are separated in size and dispersed in a film of polyvinyl alcohol (PVA), which is stretched to align the trapped linear polyyne molecules inside. As a nature of the structural anisotropy, transition dipole of the UV absorption for polyyne molecules is in parallel with the molecular axis and the absorption occurs only for the electromagnetic wave having the amplitude of its electric vector along the molecular axis. Aligned and fixed orientationally in the solid PVA film, polyyne molecules act as selective absorbers of one of the polarization components of incident light at particular wavelength. Using a light source of linearly polarized UV light, whose direction of polarization is rotatable, angular dependence of the absorption intensity is investigated for the stretched PVA film containing aligned polyyne molecules and analyzed in terms of an order parameter in the theory of linear dichroism.展开更多
We simulate the polarization manipulation of bright-dark vector bisolitons at 1-µm wavelength regime.Through changing the pulse parameters,different kinds of pulse shapes and optical spectra are generated in outp...We simulate the polarization manipulation of bright-dark vector bisolitons at 1-µm wavelength regime.Through changing the pulse parameters,different kinds of pulse shapes and optical spectra are generated in output orthogonal polarization directions.When the input vector bisoliton is polarization-locked with 1064 nm central wavelength,“1+1”fundamental dark-dark and“2+1”pseudo-high-order bright-dark group-velocity-locked vector solitons can be achieved through changing the projection angle.When the input vector bisoliton is group-velocity-locked with 1063 nm and 1065 nm central wavelengths,“2+1”and“2+2”pseudo-high-order bright-dark group-velocity-locked vector solitons,bright-dark group-velocity-locked vector solitons with chirp-like temporal oscillations are generated.Our simulation results can provide beneficial conduct for polarization manipulation of vector multi-solitons,and have promising applications in quantum information register,optical communications,nanophotonics,and all-optical switching.展开更多
Based on the study of phase angle and wavelength in pBRDF (Polarized bidirectional reflectance distribution function), roujean model was proposed to describe Orient (Polarization phase angle) quantitatively. The Rouje...Based on the study of phase angle and wavelength in pBRDF (Polarized bidirectional reflectance distribution function), roujean model was proposed to describe Orient (Polarization phase angle) quantitatively. The Roujean model was used to quantitatively describe different fruits intensity components (<i><span style="font-family:Verdana;font-size:12px;">F</span></i><sub><span style="font-family:Verdana;font-size:12px;vertical-align:sub;">00</span></sub><span style="font-family:Verdana;font-size:12px;">) and polarization phase angle (Orient), and the simulation results were analyzed and compared using statistical analysis and comparison methods to realize the prediction from the regular model to the outdoor fruit tree canopy to the canopy of outdoor fruit tree canopy random distribution. The experimental results showed that: 1) when the phase angle of jujube was 52.19<span style="white-space:nowrap;">°</span>, 66.51<span style="white-space:nowrap;">°</span></span><span style="font-family:Verdana;font-size:12px;"> </span><span style="font-family:Verdana;font-size:12px;">and 88.26<span style="white-space:nowrap;">°</span>, the </span><i><span style="font-family:Verdana;font-size:12px;">R</span></i><sup><span style="font-family:Verdana;font-size:12px;vertical-align:super;">2</span></sup><span style="font-family:Verdana;font-size:12px;"> and average errors of </span><i><span style="font-family:Verdana;font-size:12px;">F</span></i><sub><span style="font-family:Verdana;font-size:12px;vertical-align:sub;">00</span></sub><span style="font-family:Verdana;font-size:12px;"> parameters described by Roujean model are 0.9982, 0.9963, 0.9912 and 3.80%, 4.17%, 6.40%, respectively;</span><span style="font-family:Verdana;font-size:12px;"> </span><span style="font-family:Verdana;font-size:12px;">a</span><span style="font-family:Verdana;font-size:12px;">nd the </span><i><span style="font-family:Verdana;font-size:12px;">R</span></i><sup><span style="font-family:Verdana;font-size:12px;vertical-align:super;">2</span></sup><span style="font-family:Verdana;font-size:12px;"> and average error of Orient parameters described by Roujean model are 0.9056,</span><span style="font-family:Verdana;font-size:12px;"> </span><span style="font-family:Verdana;font-size:12px;">0.9223,</span><span style="font-family:Verdana;font-size:12px;"> </span><span style="font-family:Verdana;font-size:12px;">0.9260 and 6.23%,</span><span style="font-family:Verdana;font-size:12px;"> </span><span style="font-family:Verdana;font-size:12px;">3.32%,</span><span style="font-family:Verdana;font-size:12px;"> </span><span style="font-family:Verdana;font-size:12px;">8.05%, respectively;It can be seen that roujean model can quantitatively describe the Orient parameter of jujube</span><span style="font-family:Verdana;font-size:12px;">;</span><span style="font-family:Verdana;font-size:12px;">2) When the phase angle of apricot was 70.99<span style="white-space:nowrap;">°</span>, 71.28<span style="white-space:nowrap;">°</span> and 67.91<span style="white-space:nowrap;">°</span>, the </span><i><span style="font-family:Verdana;font-size:12px;">R</span></i><sup><span style="font-family:Verdana;font-size:12px;vertical-align:super;">2</span></sup><span style="font-family:Verdana;font-size:12px;"> and average errors of </span><i><span style="font-family:Verdana;font-size:12px;">F</span></i><sub><span style="font-family:Verdana;font-size:12px;vertical-align:sub;">00</span></sub><span style="font-family:Verdana;font-size:12px;"> parameters described by Roujean model </span><span style="font-family:Verdana;font-size:12px;">is</span><span style="font-family:Verdana;font-size:12px;"> 0.9862, 0.9823, 0.9792 and 3.40%,</span><span style="font-family:Verdana;font-size:12px;"> </span><span style="font-family:Verdana;font-size:12px;">4.82%,</span><span style="font-family:Verdana;font-size:12px;"> </span><span style="font-family:Verdana;font-size:12px;">5.19%, respectively;</span><span style="font-family:Verdana;font-size:12px;"> </span><span style="font-family:Verdana;font-size:12px;">And the R</span><sup><span style="font-family:Verdana;font-size:12px;vertical-align:super;">2</span></sup><span style="font-family:Verdana;font-size:12px;"> and average error of Orient parameters described by Roujean model are 0.9382, 0.8947, 0.8849 and 7.19%, 9.28%, 9.47%, respectively.</span><span style="font-family:Verdana;font-size:12px;"> </span><span style="font-family:Verdana;font-size:12px;">Roujean model can also quantitatively describe the Orient parameter of white apricot. In summary, the Roujean model can provide a good quantitative description of </span><i><span style="font-family:Verdana;font-size:12px;">f</span></i><sub><span style="font-family:Verdana;font-size:12px;vertical-align:sub;">00</span></sub><span style="font-family:Verdana;font-size:12px;"> and a good quantitative description of Orient, which in turn can predict the pBRDF parameter for more fruits with different incidence and detection directions.</span><span style="font-family:Verdana;font-size:12px;"> </span><span style="font-family:Verdana;font-size:12px;">It can correct the influence of angle factor in the nondestructive testing of outdoor fruits.</span>展开更多
An improved measurement method of circularly-polarized (CP) antennas based on linear-component amplitudes is proposed in this paper. By utilizing two sets of orthogonal linear polarization (LP) amplitudes, measurement...An improved measurement method of circularly-polarized (CP) antennas based on linear-component amplitudes is proposed in this paper. By utilizing two sets of orthogonal linear polarization (LP) amplitudes, measurement on axial ratio (AR) of CP antennas can be realized without phase information. However, the rotation sense of the co-polarization cannot be determined due to the absence of the phase information. Above problem is discussed here for the first time, and a solution is presented to determine the rotation sense of the co-polarization by using common auxiliary CP antennas. In addition, there will be some particular cases with large errors in actual measurement. Here a corresponding solution method is given. Finally, co-polarization and cross-polarization patterns can be further obtained from AR results. To verify this improved method, a self-developed CP microstrip array was measured. The measured results are in agreement with the simulated results, which prove this method is correct, effective and practical.展开更多
基金Project supported by the National Key Research and Development Program of China (Grant Nos. 2022YFA1403203 and 2021YFA1600201)the National Natural Science Foundation of China (Grant No. 12274414)the Basic Research Program of the Chinese Academy of Sciences Based on Major Scientific Infrastructures (Contract No. JZHKYPT-2021-08)。
文摘Perpendicular optical reversal of the linear dichroism transition has promising applications in polarization-sensitive optoelectronic devices. We perform a systematical study on the in-plane optical anisotropy of quasi-one-dimensional PdBr_(2) by using combined measurements of the angle-resolved polarized Raman spectroscopy(ARPRS) and anisotropic optical absorption spectrum. The analyses of ARPRS data validate the anisotropic Raman properties of the PdBr_(2) flake.And anisotropic optical absorption spectrum of PdBr_(2) nanoflake demonstrates distinct optical linear dichroism reversal. Photodetector constructed by PdBr_(2) nanowire exhibits high responsivity of 747 A·W^(-1) and specific detectivity of 5.8×10^(12) Jones. And the photodetector demonstrates prominent polarization-sensitive photoresponsivity under 405-nm light irradiation with large photocurrent anisotropy ratio of 1.56, which is superior to those of most of previously reported quasi-one-dimensional counterparts. Our study offers fundamental insights into the strong optical anisotropy exhibited by PdBr_(2), establishing it as a promising candidate for miniaturization and integration trends of polarization-related applications.
基金supported by the National Natural Science Foundation of China(Nos.12375157,12027902,and 11905011)。
文摘Purpose To propose a method for simultaneous fluorescence and Compton scattering computed tomography by using linearly polarized X-rays.Methods Monte Carlo simulations were adopted to demonstrate the feasibility of the proposed method.In the simulations,the phantom is a polytetrafluoroethylene cylinder inside which are cylindrical columns containing aluminum,water,and gold(Au)-loaded water solutions with Au concentrations ranging between 0.5 and 4.0 wt%,and a parallel-hole collimator imaging geometry was adopted.The light source was modeled based on a Thomson scattering X-ray source.The phantom images for both imaging modalities were reconstructed using a maximumlikelihood expectation maximization algorithm.Results Both the X-ray fluorescence computed tomography(XFCT)and Compton scattering computed tomography(CSCT)images of the phantom were accurately reconstructed.A similar attenuation contrast problem for the different cylindrical columns in the phantom can be resolved in the XFCT and CSCT images.The interplay between XFCT and CSCT was analyzed,and the contrast-to-noise ratio(CNR)of the reconstruction was improved by correcting for the mutual influence between the two imaging modalities.Compared with K-edge subtraction imaging,XFCT exhibits a CNR advantage for the phantom.Conclusion Simultaneous XFCT and CSCT can be realized by using linearly polarized X-rays.The synergy between the two imaging modalities would have an important application in cancer radiation therapy.
文摘A linear array of diversely polarized antennas with one pair of identical sensors is used to obtain closed-form unambiguous estimation of 2-D direction of arrival (DOA) and polarization. Spatial phase information together with weighted 3-D polarization-angular coherence structure (PACS) are first recovered with fourth-order cumulants manipulation via a new 2-D ESPRIT variant. Spatial filtering is performed to obtain the scaled PACS, from which the closed-form 2-D DOA and polarization estimates can be derived with only quadrant ambiguity involved. The undesired quadrant ambiguity can be further resolved by using the acquired estimate of spatial phase factor.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11474168 and 11747161)the Priority Academic Program Development of Jiangsu Higher Education Institutions,Chinathe China Postdoctoral Science Foundation(Grant No.2018M642293)
文摘Single-photon entanglement(SPE) is an important source in quantum communication. In this paper, we put forward a single-photon-assisted noiseless linear amplification protocol to protect the SPE of an arbitrary polarization–time-bin qudit from the photon transmission loss caused by the practical channel noise. After the amplification, the fidelity of the SPE can be effectively increased. Meanwhile, the encoded polarization–time-bin features of the qudit can be well preserved. The protocol can be realized under the current experimental conditions. Moreover, the amplification protocol can be extended to resist complete photon loss and partial photon loss during the photon transmission. After the amplification, we can not only increase the fidelity of the target state, but also solve the decoherence problem simultaneously. Based on the above features, our amplification protocol may be useful in future quantum communication.
基金supports from National Key R&D Program of China(2018YFA0701800)Project of Fujian Province Major Science and Technology(2020HZ01012).
文摘Polarization holography is a newly researched field,that has gained traction with the development of tensor theory.It primarily focuses on the interaction between polarization waves and photosensitive materials.The extraordinary capabil-ities in modulating the amplitude,phase,and polarization of light have resulted in several new applications,such as holo-graphic storage technology,multichannel polarization multiplexing,vector beams,and optical functional devices.In this paper,fundamental research on polarization holography with linear polarized wave,a component of the theory of polariz-ation holography,has been reviewed.Primarily,the effect of various polarization changes on the linear and nonlinear po-larization characteristics of reconstructed wave under continuous exposure and during holographic recording and recon-struction have been focused upon.The polarization modulation realized using these polarization characteristics exhibits unusual functionalities,rendering polarization holography as an attractive research topic in many fields of applications.This paper aims to provide readers with new insights and broaden the application of polarization holography in more sci-entific and technological research fields.
基金Project supported by the National Key R&D Program of China(Grant No.2016YFA0301401)the Fund for Shanxi "331 Project" Key Subjects Construction,China(Grant No.1331KS)
文摘A theoretical model of quasi-three-level laser system is developed, in which both the thermally induced depolarization loss and the effect of energy-transfer upconversion are taken into account. Based on the theoretical investigation of the influences of output transmission and incident pump power on thermally induced depolarization loss, the output performance of 946 nm linearly polarized Nd:YAG laser is experimentally studied. By optimizing the transmission of output coupler, a 946 nm linearly polarized continuous-wave single-transverse-mode laser with an output power of 4.2 W and an optical-optical conversion efficiency of 16.8% is obtained, and the measured beam quality factors are M2 = 1.13 and My2 = 1.21. The theoretical prediction is in good agreement with the experimental result.
基金supported by the National Instrument Development Special Program(2013YQ03065102)the Natural Science Foundation of China(614-75010,61428501)Science and Technology Commission of Shanghai Municipality(16DZ-1100300).
文摘Fluorescence polarization is related to the dipole orientation of chromophores,making fuores-cence polarization microscopy possible to_reveal structures and functions of tagged cellularorganelles and biological macromolecules.Several recent super resolution techniques have beenapplied to fluorescence polarization microscopy,achieving dipole measurement at nanoscale.In this review,we summarize both difraction limited and super resolution fluorescence polari-zation microscopy techniques,as well as their applications in biological imaging.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11404204 and 11447208the Key Project of Chinese Ministry of Education under Grant No 211025+1 种基金the Research Fund for the Doctoral Program of Higher Education of China under Grant No 20111404120004the Natural Science Foundation for Young Scientists of Shanxi Province under Grant No 2009021005
文摘The two-color circularly polarized pulses scheme was proposed to generate isolated attosecond pulses in our previous work [Phys. Rev. A 87 (2013) 043406], while the polarization of the attosecond pulse was not investigated. We show a supplementary explanation of this scheme and present another scheme to generate linear isolated attosecond pulses by combining a circularly polarized pulse with an elliptically polarized pulse. High-order harmonic generation and quantum path control are investigated to compare these two schemes. Both schemes can obtain supercontinuum spectra plateau from about 200eV to 550eV, which belong to the water window region. It is found that the latter scheme can clearly eliminate the short quantum path and extend the harmonic plateau. A linear isolated attosecond pulse with a duration of sub-6Oas can be generated by superposing a bandwidth of 70eV.
基金supported by the MEXT-Supported Program for the Strategic Research Foundation at Private Universities entitled Establishing a Best-Energy-Mix Research Center to Promote the Use of Solar Energy subsidized from the Ministry of Education, Culture, Sports, Science and Technology of Japan and Kindai University
文摘Electronic absorption bands of conjugated linear carbon chain molecules, namely polyynes H(C≡C)nH (n=5-7), are exploited to devise light-polarizing films applicable to the UV. Laser ablated polyynes are separated in size and dispersed in a film of polyvinyl alcohol (PVA), which is stretched to align the trapped linear polyyne molecules inside. As a nature of the structural anisotropy, transition dipole of the UV absorption for polyyne molecules is in parallel with the molecular axis and the absorption occurs only for the electromagnetic wave having the amplitude of its electric vector along the molecular axis. Aligned and fixed orientationally in the solid PVA film, polyyne molecules act as selective absorbers of one of the polarization components of incident light at particular wavelength. Using a light source of linearly polarized UV light, whose direction of polarization is rotatable, angular dependence of the absorption intensity is investigated for the stretched PVA film containing aligned polyyne molecules and analyzed in terms of an order parameter in the theory of linear dichroism.
基金Project supported by National Key Research and Development Program of China(Grant No.2018YFB0504500)the National Natural Science Foundation of China(Grant No.51672177)Shanghai Sailing Program(Grant No.20YF1447500).
文摘We simulate the polarization manipulation of bright-dark vector bisolitons at 1-µm wavelength regime.Through changing the pulse parameters,different kinds of pulse shapes and optical spectra are generated in output orthogonal polarization directions.When the input vector bisoliton is polarization-locked with 1064 nm central wavelength,“1+1”fundamental dark-dark and“2+1”pseudo-high-order bright-dark group-velocity-locked vector solitons can be achieved through changing the projection angle.When the input vector bisoliton is group-velocity-locked with 1063 nm and 1065 nm central wavelengths,“2+1”and“2+2”pseudo-high-order bright-dark group-velocity-locked vector solitons,bright-dark group-velocity-locked vector solitons with chirp-like temporal oscillations are generated.Our simulation results can provide beneficial conduct for polarization manipulation of vector multi-solitons,and have promising applications in quantum information register,optical communications,nanophotonics,and all-optical switching.
文摘Based on the study of phase angle and wavelength in pBRDF (Polarized bidirectional reflectance distribution function), roujean model was proposed to describe Orient (Polarization phase angle) quantitatively. The Roujean model was used to quantitatively describe different fruits intensity components (<i><span style="font-family:Verdana;font-size:12px;">F</span></i><sub><span style="font-family:Verdana;font-size:12px;vertical-align:sub;">00</span></sub><span style="font-family:Verdana;font-size:12px;">) and polarization phase angle (Orient), and the simulation results were analyzed and compared using statistical analysis and comparison methods to realize the prediction from the regular model to the outdoor fruit tree canopy to the canopy of outdoor fruit tree canopy random distribution. The experimental results showed that: 1) when the phase angle of jujube was 52.19<span style="white-space:nowrap;">°</span>, 66.51<span style="white-space:nowrap;">°</span></span><span style="font-family:Verdana;font-size:12px;"> </span><span style="font-family:Verdana;font-size:12px;">and 88.26<span style="white-space:nowrap;">°</span>, the </span><i><span style="font-family:Verdana;font-size:12px;">R</span></i><sup><span style="font-family:Verdana;font-size:12px;vertical-align:super;">2</span></sup><span style="font-family:Verdana;font-size:12px;"> and average errors of </span><i><span style="font-family:Verdana;font-size:12px;">F</span></i><sub><span style="font-family:Verdana;font-size:12px;vertical-align:sub;">00</span></sub><span style="font-family:Verdana;font-size:12px;"> parameters described by Roujean model are 0.9982, 0.9963, 0.9912 and 3.80%, 4.17%, 6.40%, respectively;</span><span style="font-family:Verdana;font-size:12px;"> </span><span style="font-family:Verdana;font-size:12px;">a</span><span style="font-family:Verdana;font-size:12px;">nd the </span><i><span style="font-family:Verdana;font-size:12px;">R</span></i><sup><span style="font-family:Verdana;font-size:12px;vertical-align:super;">2</span></sup><span style="font-family:Verdana;font-size:12px;"> and average error of Orient parameters described by Roujean model are 0.9056,</span><span style="font-family:Verdana;font-size:12px;"> </span><span style="font-family:Verdana;font-size:12px;">0.9223,</span><span style="font-family:Verdana;font-size:12px;"> </span><span style="font-family:Verdana;font-size:12px;">0.9260 and 6.23%,</span><span style="font-family:Verdana;font-size:12px;"> </span><span style="font-family:Verdana;font-size:12px;">3.32%,</span><span style="font-family:Verdana;font-size:12px;"> </span><span style="font-family:Verdana;font-size:12px;">8.05%, respectively;It can be seen that roujean model can quantitatively describe the Orient parameter of jujube</span><span style="font-family:Verdana;font-size:12px;">;</span><span style="font-family:Verdana;font-size:12px;">2) When the phase angle of apricot was 70.99<span style="white-space:nowrap;">°</span>, 71.28<span style="white-space:nowrap;">°</span> and 67.91<span style="white-space:nowrap;">°</span>, the </span><i><span style="font-family:Verdana;font-size:12px;">R</span></i><sup><span style="font-family:Verdana;font-size:12px;vertical-align:super;">2</span></sup><span style="font-family:Verdana;font-size:12px;"> and average errors of </span><i><span style="font-family:Verdana;font-size:12px;">F</span></i><sub><span style="font-family:Verdana;font-size:12px;vertical-align:sub;">00</span></sub><span style="font-family:Verdana;font-size:12px;"> parameters described by Roujean model </span><span style="font-family:Verdana;font-size:12px;">is</span><span style="font-family:Verdana;font-size:12px;"> 0.9862, 0.9823, 0.9792 and 3.40%,</span><span style="font-family:Verdana;font-size:12px;"> </span><span style="font-family:Verdana;font-size:12px;">4.82%,</span><span style="font-family:Verdana;font-size:12px;"> </span><span style="font-family:Verdana;font-size:12px;">5.19%, respectively;</span><span style="font-family:Verdana;font-size:12px;"> </span><span style="font-family:Verdana;font-size:12px;">And the R</span><sup><span style="font-family:Verdana;font-size:12px;vertical-align:super;">2</span></sup><span style="font-family:Verdana;font-size:12px;"> and average error of Orient parameters described by Roujean model are 0.9382, 0.8947, 0.8849 and 7.19%, 9.28%, 9.47%, respectively.</span><span style="font-family:Verdana;font-size:12px;"> </span><span style="font-family:Verdana;font-size:12px;">Roujean model can also quantitatively describe the Orient parameter of white apricot. In summary, the Roujean model can provide a good quantitative description of </span><i><span style="font-family:Verdana;font-size:12px;">f</span></i><sub><span style="font-family:Verdana;font-size:12px;vertical-align:sub;">00</span></sub><span style="font-family:Verdana;font-size:12px;"> and a good quantitative description of Orient, which in turn can predict the pBRDF parameter for more fruits with different incidence and detection directions.</span><span style="font-family:Verdana;font-size:12px;"> </span><span style="font-family:Verdana;font-size:12px;">It can correct the influence of angle factor in the nondestructive testing of outdoor fruits.</span>
文摘An improved measurement method of circularly-polarized (CP) antennas based on linear-component amplitudes is proposed in this paper. By utilizing two sets of orthogonal linear polarization (LP) amplitudes, measurement on axial ratio (AR) of CP antennas can be realized without phase information. However, the rotation sense of the co-polarization cannot be determined due to the absence of the phase information. Above problem is discussed here for the first time, and a solution is presented to determine the rotation sense of the co-polarization by using common auxiliary CP antennas. In addition, there will be some particular cases with large errors in actual measurement. Here a corresponding solution method is given. Finally, co-polarization and cross-polarization patterns can be further obtained from AR results. To verify this improved method, a self-developed CP microstrip array was measured. The measured results are in agreement with the simulated results, which prove this method is correct, effective and practical.