The rheological behavior, thermal properties and foam morphology of linear polypropylene and long chain branching polypropylene prepared through UV irradiation reactive extrusion were studied by rheological test, melt...The rheological behavior, thermal properties and foam morphology of linear polypropylene and long chain branching polypropylene prepared through UV irradiation reactive extrusion were studied by rheological test, melt index test, DSC and supercritical carbon dioxide foaming technology. Rheological test and melt index test confirmed that under UV irradiation and extrusion, adding photo-initiator and cross- linking agent could achieve the purpose of branching, thus improved the melt strength of polypropylene effectively. The DSC results revealed that with the introducing of long chain branching, the melting range of the polypropylene broadened and the crystallization temperature increased. Owing to the introduction of long chain branches, polypropylene exhibited higher melt strength and strain hardening behavior. Compared with linear polypropylene, the foam morphologies of long chain branching polypropylene were more uniform.展开更多
Long chain branched polypropylene random copolymers (LCB-PPRs) were prepared via reactive extrusion with the addition of dicumyl peroxide (DCP) and various amounts of 1,6-hexanediol diacrylate (HDDA) into PPR. F...Long chain branched polypropylene random copolymers (LCB-PPRs) were prepared via reactive extrusion with the addition of dicumyl peroxide (DCP) and various amounts of 1,6-hexanediol diacrylate (HDDA) into PPR. Fourier transform infrared spectrometer (FTIR) was applied to confirm the existence of branching and( investigate the grafting degree for the modified PPRs. Melt flow index (MFI) and oscillatory shear rheological properties including complex viscosity, storage modulus, loss tangent and the Cole-Cole plots were studied to differentiate the LCB-PPRs from linear PPR. Differential scanning calorimetry (DSC) and polarized light microscopy (PLM) were used to study the melting and crystallization behavior and the spherulite morphology, respectively. Qualitative and quantitative analyses of rheological curves demonstrated the existence of LCB. The effect of the LCB on crystalline morphology, crystallization behavior and molecular mobility, and, thereby, the mechanical properties were studied and analyzed. Due to the entanglements between molecular chains and the nucleating effect of LCB, LCB-PPRs showed higher crystallization temperature and crystallinity, higher crystallization rate, more uniformly dispersed and much smaller crystallite compared with virgin PPR, thus giving rise to significantly improve impact strength. Moreover, the LCB-PPRs exhibited the improved yield strength. The mobility of the molecular chain segments, as demonstrated by dynamic mechanical analysis (DMA), was improved for the modified PPRs, which also contributed to the improvement of their mechanical properties.展开更多
The isothermal and non-isothermal crystallization kinetics of LCBPP and linear-iPP was investigated by optical microscopy and differential scanning calorimetry (DSC). The optical microscopy results in the isothermal c...The isothermal and non-isothermal crystallization kinetics of LCBPP and linear-iPP was investigated by optical microscopy and differential scanning calorimetry (DSC). The optical microscopy results in the isothermal crystallization process show that the crystals of LCBPP grow slower than the crystals of the linear-iPP. This originates from the low chain mobility, or in other words, the lower chain diffusion rate of LCBPP due to the existence of long side chains. The DSC results in the isothermal crystallization process show that the LCBPP exhibits, however, a higher overall crystallization rate with respect to the linear-iPP. This is related to the higher nucleation ability of LCBPP since the isothermal crystallization process of both LCBPP and linear-iPP are nucleation-dominated. Avrami analysis indicates that the nucleation nature and crystal growth manner of LCBPP and linear-iPP are about the same. The analy- ses of the non-isothermal crystallization processes indicate an increment in crystallization rate with increasing cooling rate. But at any cooling rate, the linear-iPP crystallizes more quickly than the LCBPP. This implies that the non-isothermal crystallization processes of LCBPP and linear-iPP are diffu- sion-dominated, in which the lower chain diffusion rate of LCBPP results in the slower crystallization of it.展开更多
基金Funded by the National Natural Science Foundation of China(No.51103091)Scientific Research Foundation for the Returned Overseas Chinese Scholars State Education Ministry(No.20101174-4-3)the Opening Project of the Key Laboratory of Polymer Processing Engineering,Ministry of Education,China and the Fundamental Research Funds for the Central Universities(No.2012ZM0074)
文摘The rheological behavior, thermal properties and foam morphology of linear polypropylene and long chain branching polypropylene prepared through UV irradiation reactive extrusion were studied by rheological test, melt index test, DSC and supercritical carbon dioxide foaming technology. Rheological test and melt index test confirmed that under UV irradiation and extrusion, adding photo-initiator and cross- linking agent could achieve the purpose of branching, thus improved the melt strength of polypropylene effectively. The DSC results revealed that with the introducing of long chain branching, the melting range of the polypropylene broadened and the crystallization temperature increased. Owing to the introduction of long chain branches, polypropylene exhibited higher melt strength and strain hardening behavior. Compared with linear polypropylene, the foam morphologies of long chain branching polypropylene were more uniform.
基金financially supported by the Foundation for Development of Science and Technology of Fuzhou University(No.2011-XY-1)
文摘Long chain branched polypropylene random copolymers (LCB-PPRs) were prepared via reactive extrusion with the addition of dicumyl peroxide (DCP) and various amounts of 1,6-hexanediol diacrylate (HDDA) into PPR. Fourier transform infrared spectrometer (FTIR) was applied to confirm the existence of branching and( investigate the grafting degree for the modified PPRs. Melt flow index (MFI) and oscillatory shear rheological properties including complex viscosity, storage modulus, loss tangent and the Cole-Cole plots were studied to differentiate the LCB-PPRs from linear PPR. Differential scanning calorimetry (DSC) and polarized light microscopy (PLM) were used to study the melting and crystallization behavior and the spherulite morphology, respectively. Qualitative and quantitative analyses of rheological curves demonstrated the existence of LCB. The effect of the LCB on crystalline morphology, crystallization behavior and molecular mobility, and, thereby, the mechanical properties were studied and analyzed. Due to the entanglements between molecular chains and the nucleating effect of LCB, LCB-PPRs showed higher crystallization temperature and crystallinity, higher crystallization rate, more uniformly dispersed and much smaller crystallite compared with virgin PPR, thus giving rise to significantly improve impact strength. Moreover, the LCB-PPRs exhibited the improved yield strength. The mobility of the molecular chain segments, as demonstrated by dynamic mechanical analysis (DMA), was improved for the modified PPRs, which also contributed to the improvement of their mechanical properties.
基金the Outstanding Youth Fund and the National Natural Science Founda-tion of China (Grant Nos. 50521302, 20574079 and 20423003)
文摘The isothermal and non-isothermal crystallization kinetics of LCBPP and linear-iPP was investigated by optical microscopy and differential scanning calorimetry (DSC). The optical microscopy results in the isothermal crystallization process show that the crystals of LCBPP grow slower than the crystals of the linear-iPP. This originates from the low chain mobility, or in other words, the lower chain diffusion rate of LCBPP due to the existence of long side chains. The DSC results in the isothermal crystallization process show that the LCBPP exhibits, however, a higher overall crystallization rate with respect to the linear-iPP. This is related to the higher nucleation ability of LCBPP since the isothermal crystallization process of both LCBPP and linear-iPP are nucleation-dominated. Avrami analysis indicates that the nucleation nature and crystal growth manner of LCBPP and linear-iPP are about the same. The analy- ses of the non-isothermal crystallization processes indicate an increment in crystallization rate with increasing cooling rate. But at any cooling rate, the linear-iPP crystallizes more quickly than the LCBPP. This implies that the non-isothermal crystallization processes of LCBPP and linear-iPP are diffu- sion-dominated, in which the lower chain diffusion rate of LCBPP results in the slower crystallization of it.