A μ analysis and μ synthesis method for nonlinear robust control systems was presented. The nonlinear robust contrl problem using μ method was described. By means of the nonlinear state feedback and state coordin...A μ analysis and μ synthesis method for nonlinear robust control systems was presented. The nonlinear robust contrl problem using μ method was described. By means of the nonlinear state feedback and state coordinates transformation, many uncertain nonlinear systems can be transformed as a linear fractional transformation (LFT) on the generalized plant and the uncertainty. Based on the LFT, a linear robust controller can be obtained by the DK iteration and then a corresponding nonlinear robust control law is constructed. An example was given in the paper.展开更多
In order to achieve failure prediction without manual intervention for distributed systems, a novel failure feature analysis and extraction approach to automate failure prediction is proposed. Compared with the tradit...In order to achieve failure prediction without manual intervention for distributed systems, a novel failure feature analysis and extraction approach to automate failure prediction is proposed. Compared with the traditional methods which focus on building heuristic rules or models, the autonomic prediction approach analyzes the nonlinear correlation of failure features by recognizing failure patterns. Failure data are sorted according to the nonlinear correlation and failure signature is proposed for autonomic prediction. In addition, the Manifold Learning algorithm named supervised locally linear embedding is applied to achieve feature extraction. Based on the runtime monitoring of failure metrics, the experimental results indicate that the proposed method has better performance in terms of both correlation recognition precision and feature extraction quality and thus it can be used to design efficient autonomic failure prediction for distributed systems.展开更多
Some problems encountered in applying Smith's technique to predict the PIO tendency for non-linear pilot-vehicle loop, are thoroughly analyzed. Subsequently, modified PIO predictable criteria are developed, in add...Some problems encountered in applying Smith's technique to predict the PIO tendency for non-linear pilot-vehicle loop, are thoroughly analyzed. Subsequently, modified PIO predictable criteria are developed, in addition, to make also a certain improvement on Smith's PIO definition and PIO types. These modified criteria are applied to predict PIO tendency of various different configurations on the variable stability aircraft NT-33 in case of supposed non-linearity, and predicted results are compared with the flight tests and analytical results in the case of linear hypothesis given in Ref. (4)展开更多
An investigation of the difference in seasonal precipitation forecast skills between the multiple linear regression (MLR) ensemble and the simple multimodel ensemble mean (EM) was based on the forecast quality of ...An investigation of the difference in seasonal precipitation forecast skills between the multiple linear regression (MLR) ensemble and the simple multimodel ensemble mean (EM) was based on the forecast quality of individual models. The possible causes of difference in previous studies were analyzed. In order to make the simulation capability of studied regions relatively uniform, three regions with different temporal correlation coefficients were chosen for this study. Results show the causes resulting in the incapability of the MLR approach vary among different regions. In the Nifio3.4 region, strong co-linearity within individual models is generally the main reason. However, in the high latitude region, no significant co-linearity can be found in individual models, but the abilities of single models are so poor that it makes the MLR approach inappropriate for superensemble forecasts in this region. In addition, it is important to note that the use of various score measurements could result in some discrepancies when we compare the results derived from different multimodel ensemble approaches.展开更多
The application of the linear guideways is very extensive, such as automation equipment, heavy-duty carry equipment, heavy-cut machining tool, CNC grinding machine, large-scale planning machine and machining center wi...The application of the linear guideways is very extensive, such as automation equipment, heavy-duty carry equipment, heavy-cut machining tool, CNC grinding machine, large-scale planning machine and machining center with the demand of high rigidity and heavy load. By means of the study of contact behavior between the roller/guideway and roller/slider, roller type linear guideways can improve the machining accuracy. The goal of this paper is to construct the fatigue life model of the linear guideway, with the help of the contact mechanics of rollers. In beginning, the analyses of the rigidity of a single roller compressed between guideway and slider was conducted. Then, the normal contact pressure of linear guideways was obtained by using the superposition method, and verified by the FEM software (ANSYS workbench). Finally, the bearing life theory proposed by Lundberg and Palmgren was used to describe the contact fatigue life.展开更多
In oil and gas exploration,elucidating the complex interdependencies among geological variables is paramount.Our study introduces the application of sophisticated regression analysis method at the forefront,aiming not...In oil and gas exploration,elucidating the complex interdependencies among geological variables is paramount.Our study introduces the application of sophisticated regression analysis method at the forefront,aiming not just at predicting geophysical logging curve values but also innovatively mitigate hydrocarbon depletion observed in geochemical logging.Through a rigorous assessment,we explore the efficacy of eight regression models,bifurcated into linear and nonlinear groups,to accommodate the multifaceted nature of geological datasets.Our linear model suite encompasses the Standard Equation,Ridge Regression,Least Absolute Shrinkage and Selection Operator,and Elastic Net,each presenting distinct advantages.The Standard Equation serves as a foundational benchmark,whereas Ridge Regression implements penalty terms to counteract overfitting,thus bolstering model robustness in the presence of multicollinearity.The Least Absolute Shrinkage and Selection Operator for variable selection functions to streamline models,enhancing their interpretability,while Elastic Net amalgamates the merits of Ridge Regression and Least Absolute Shrinkage and Selection Operator,offering a harmonized solution to model complexity and comprehensibility.On the nonlinear front,Gradient Descent,Kernel Ridge Regression,Support Vector Regression,and Piecewise Function-Fitting methods introduce innovative approaches.Gradient Descent assures computational efficiency in optimizing solutions,Kernel Ridge Regression leverages the kernel trick to navigate nonlinear patterns,and Support Vector Regression is proficient in forecasting extremities,pivotal for exploration risk assessment.The Piecewise Function-Fitting approach,tailored for geological data,facilitates adaptable modeling of variable interrelations,accommodating abrupt data trend shifts.Our analysis identifies Ridge Regression,particularly when augmented by Piecewise Function-Fitting,as superior in recouping hydrocarbon losses,and underscoring its utility in resource quantification refinement.Meanwhile,Kernel Ridge Regression emerges as a noteworthy strategy in ameliorating porosity-logging curve prediction for well A,evidencing its aptness for intricate geological structures.This research attests to the scientific ascendancy and broad-spectrum relevance of these regression techniques over conventional methods while heralding new horizons for their deployment in the oil and gas sector.The insights garnered from these advanced modeling strategies are set to transform geological and engineering practices in hydrocarbon prediction,evaluation,and recovery.展开更多
This paper presents a novel adaptive nonlinear model predictive control design for trajectory tracking of flexible-link manipulators consisting of feedback linearization, linear model predictive control, and unscented...This paper presents a novel adaptive nonlinear model predictive control design for trajectory tracking of flexible-link manipulators consisting of feedback linearization, linear model predictive control, and unscented Kalman filtering. Reducing the nonlinear system to a linear system by feedback linearization simplifies the optimization problem of the model predictive controller significantly, which, however, is no longer linear in the presence of parameter uncertainties and can potentially lead to an undesired dynamical behaviour. An unscented Kalman filter is used to approximate the dynamics of the prediction model by an online parameter estimation, which leads to an adaptation of the optimization problem in each time step and thus to a better prediction and an improved input action. Finally, a detailed fuzzy-arithmetic analysis is performed in order to quantify the effect of the uncertainties on the control structure and to derive robustness assessments. The control structure is applied to a serial manipulator with two flexible links containing uncertain model parameters and acting in three-dimensional space.展开更多
This paper briefly reviewed the research progresses of earthquake prediction and/or forecasting in China during 1999~2002, especially focused on mid-short term prediction methods with approaches of seismicity, crustal...This paper briefly reviewed the research progresses of earthquake prediction and/or forecasting in China during 1999~2002, especially focused on mid-short term prediction methods with approaches of seismicity, crustal deformation, electromagnetism, ground water and the analysis by synthesis, and the application of the methods to the practice of earthquake prediction.展开更多
In this paper we aim to analyse temporal variation of CD4 cell counts for HIV-infected individuals under antiretroviral therapy by using statistical methods. This is achieved by resorting to recursive binary regressio...In this paper we aim to analyse temporal variation of CD4 cell counts for HIV-infected individuals under antiretroviral therapy by using statistical methods. This is achieved by resorting to recursive binary regression tree approach [1]?[2]. This approach has made it possible to highlight the existence of several segments of the population of interest described by the interactions between the predictive covariates of the response to the treatment regimen.展开更多
A novel text independent speaker identification system is proposed. In the proposed system, the 12-order perceptual linear predictive cepstrum and their delta coefficients in the span of five frames are extracted from...A novel text independent speaker identification system is proposed. In the proposed system, the 12-order perceptual linear predictive cepstrum and their delta coefficients in the span of five frames are extracted from the segmented speech based on the method of pitch synchronous analysis. The Fisher ratios of the original coefficients then be calculated, and the coefficients whose Fisher ratios are bigger are selected to form the 13-dimensional feature vectors of speaker. The Gaussian mixture model is used to model the speakers. The experimental results show that the identification accuracy of the proposed system is obviously better than that of the systems based on other conventional coefficients like the linear predictive cepstral coefficients and the Mel-frequency cepstral coefficients.展开更多
水质指标具有多元相关性、时序性和非线性的特点,为有效预测河流水质变化,针对水质数据存在缺失和异常的问题,提出基于灰色关联分析-门控循环单元(Grey Relational Analysis-Gated Recurrent Unit, GRA-GRU)的水质预测模型。以淮河流域...水质指标具有多元相关性、时序性和非线性的特点,为有效预测河流水质变化,针对水质数据存在缺失和异常的问题,提出基于灰色关联分析-门控循环单元(Grey Relational Analysis-Gated Recurrent Unit, GRA-GRU)的水质预测模型。以淮河流域水质数据为样本,使用线性插值修补缺失数据和剔除的异常数据。使用灰色关联分析计算不同水质指标间的相关性,选择高相关性的水质指标以确定输入变量,并使用门控循环单元(Gated Recurrent Unit, GRU)预测不同的水质指标。将GRA-GRU的预测结果与反向传播神经网络(Back Propagation Neural Network, BPNN)、循环神经网络(Recurrent Neural Network, RNN)、长短期记忆神经网络(Long Short Term Memory, LSTM)、GRU及灰色关联分析-长短期记忆神经网络(Grey Relational Analysis-Long Short Term Memory, GRA-LSTM)进行对比分析,结果显示GRA-GRU在不同水质指标预测上具有较好的适应性,可以有效降低预测误差。其中,与其他模型相比,GRA-GRU预测的化学需氧量在均方根误差上分别降低了3.617%、0.681%、0.478%、1.505%和0.471%。展开更多
Based on the quasi-measured values of tropospheric refraction,the relation betweenand △R as expressed in Eq.(3)is proved,and according to the stable feature of refractivityat 9 km above sea level,a simplified method ...Based on the quasi-measured values of tropospheric refraction,the relation betweenand △R as expressed in Eq.(3)is proved,and according to the stable feature of refractivityat 9 km above sea level,a simplified method for predicting tropospheric range error is analysed.Some new parameters for linear regression analysis of tropospheric range error are given also.展开更多
A continuous-time Model Predictive Controller was proposed using Kautz function in order to improve the performance of Load Frequency Control(LFC).A dynamic model of an interconnected power system was used for Model P...A continuous-time Model Predictive Controller was proposed using Kautz function in order to improve the performance of Load Frequency Control(LFC).A dynamic model of an interconnected power system was used for Model Predictive Controller(MPC)design.MPC predicts the future trajectory of the dynamic model by calculating the optimal closed loop feedback gain matrix.In this paper,the optimal closed loop feedback gain matrix was calculated using Kautz function.Being an Orthonormal Basis Function(OBF),Kautz function has an advantage of solving complex pole-based nonlinear system.Genetic Algorithm(GA)was applied to optimally tune the Kautz function-based MPC.A constraint based on phase plane analysis was implemented with the cost function in order to improve the robustness of the Kautz function-based MPC.The proposed method was simulated with three area interconnected power system and the efficiency of the proposed method was measured and exhibited by comparing with conventional Proportional and Integral(PI)controller and Linear Quadratic Regulation(LQR).展开更多
文摘A μ analysis and μ synthesis method for nonlinear robust control systems was presented. The nonlinear robust contrl problem using μ method was described. By means of the nonlinear state feedback and state coordinates transformation, many uncertain nonlinear systems can be transformed as a linear fractional transformation (LFT) on the generalized plant and the uncertainty. Based on the LFT, a linear robust controller can be obtained by the DK iteration and then a corresponding nonlinear robust control law is constructed. An example was given in the paper.
基金Supported by the National High Technology Research and Development Programme of China ( No. 2007AA01Z401 ) and the National Natural Science Foundation of China (No. 90718003, 60973027).
文摘In order to achieve failure prediction without manual intervention for distributed systems, a novel failure feature analysis and extraction approach to automate failure prediction is proposed. Compared with the traditional methods which focus on building heuristic rules or models, the autonomic prediction approach analyzes the nonlinear correlation of failure features by recognizing failure patterns. Failure data are sorted according to the nonlinear correlation and failure signature is proposed for autonomic prediction. In addition, the Manifold Learning algorithm named supervised locally linear embedding is applied to achieve feature extraction. Based on the runtime monitoring of failure metrics, the experimental results indicate that the proposed method has better performance in terms of both correlation recognition precision and feature extraction quality and thus it can be used to design efficient autonomic failure prediction for distributed systems.
文摘Some problems encountered in applying Smith's technique to predict the PIO tendency for non-linear pilot-vehicle loop, are thoroughly analyzed. Subsequently, modified PIO predictable criteria are developed, in addition, to make also a certain improvement on Smith's PIO definition and PIO types. These modified criteria are applied to predict PIO tendency of various different configurations on the variable stability aircraft NT-33 in case of supposed non-linearity, and predicted results are compared with the flight tests and analytical results in the case of linear hypothesis given in Ref. (4)
基金supported by the National Key Technology Research and Development Program(Grant No.2006BAC02B04)the Major State Basic Research Development Program of China(Grant No.2006CB400503)
文摘An investigation of the difference in seasonal precipitation forecast skills between the multiple linear regression (MLR) ensemble and the simple multimodel ensemble mean (EM) was based on the forecast quality of individual models. The possible causes of difference in previous studies were analyzed. In order to make the simulation capability of studied regions relatively uniform, three regions with different temporal correlation coefficients were chosen for this study. Results show the causes resulting in the incapability of the MLR approach vary among different regions. In the Nifio3.4 region, strong co-linearity within individual models is generally the main reason. However, in the high latitude region, no significant co-linearity can be found in individual models, but the abilities of single models are so poor that it makes the MLR approach inappropriate for superensemble forecasts in this region. In addition, it is important to note that the use of various score measurements could result in some discrepancies when we compare the results derived from different multimodel ensemble approaches.
文摘The application of the linear guideways is very extensive, such as automation equipment, heavy-duty carry equipment, heavy-cut machining tool, CNC grinding machine, large-scale planning machine and machining center with the demand of high rigidity and heavy load. By means of the study of contact behavior between the roller/guideway and roller/slider, roller type linear guideways can improve the machining accuracy. The goal of this paper is to construct the fatigue life model of the linear guideway, with the help of the contact mechanics of rollers. In beginning, the analyses of the rigidity of a single roller compressed between guideway and slider was conducted. Then, the normal contact pressure of linear guideways was obtained by using the superposition method, and verified by the FEM software (ANSYS workbench). Finally, the bearing life theory proposed by Lundberg and Palmgren was used to describe the contact fatigue life.
文摘In oil and gas exploration,elucidating the complex interdependencies among geological variables is paramount.Our study introduces the application of sophisticated regression analysis method at the forefront,aiming not just at predicting geophysical logging curve values but also innovatively mitigate hydrocarbon depletion observed in geochemical logging.Through a rigorous assessment,we explore the efficacy of eight regression models,bifurcated into linear and nonlinear groups,to accommodate the multifaceted nature of geological datasets.Our linear model suite encompasses the Standard Equation,Ridge Regression,Least Absolute Shrinkage and Selection Operator,and Elastic Net,each presenting distinct advantages.The Standard Equation serves as a foundational benchmark,whereas Ridge Regression implements penalty terms to counteract overfitting,thus bolstering model robustness in the presence of multicollinearity.The Least Absolute Shrinkage and Selection Operator for variable selection functions to streamline models,enhancing their interpretability,while Elastic Net amalgamates the merits of Ridge Regression and Least Absolute Shrinkage and Selection Operator,offering a harmonized solution to model complexity and comprehensibility.On the nonlinear front,Gradient Descent,Kernel Ridge Regression,Support Vector Regression,and Piecewise Function-Fitting methods introduce innovative approaches.Gradient Descent assures computational efficiency in optimizing solutions,Kernel Ridge Regression leverages the kernel trick to navigate nonlinear patterns,and Support Vector Regression is proficient in forecasting extremities,pivotal for exploration risk assessment.The Piecewise Function-Fitting approach,tailored for geological data,facilitates adaptable modeling of variable interrelations,accommodating abrupt data trend shifts.Our analysis identifies Ridge Regression,particularly when augmented by Piecewise Function-Fitting,as superior in recouping hydrocarbon losses,and underscoring its utility in resource quantification refinement.Meanwhile,Kernel Ridge Regression emerges as a noteworthy strategy in ameliorating porosity-logging curve prediction for well A,evidencing its aptness for intricate geological structures.This research attests to the scientific ascendancy and broad-spectrum relevance of these regression techniques over conventional methods while heralding new horizons for their deployment in the oil and gas sector.The insights garnered from these advanced modeling strategies are set to transform geological and engineering practices in hydrocarbon prediction,evaluation,and recovery.
文摘This paper presents a novel adaptive nonlinear model predictive control design for trajectory tracking of flexible-link manipulators consisting of feedback linearization, linear model predictive control, and unscented Kalman filtering. Reducing the nonlinear system to a linear system by feedback linearization simplifies the optimization problem of the model predictive controller significantly, which, however, is no longer linear in the presence of parameter uncertainties and can potentially lead to an undesired dynamical behaviour. An unscented Kalman filter is used to approximate the dynamics of the prediction model by an online parameter estimation, which leads to an adaptation of the optimization problem in each time step and thus to a better prediction and an improved input action. Finally, a detailed fuzzy-arithmetic analysis is performed in order to quantify the effect of the uncertainties on the control structure and to derive robustness assessments. The control structure is applied to a serial manipulator with two flexible links containing uncertain model parameters and acting in three-dimensional space.
基金State Science and Technique Key Program (2001BA601B01).
文摘This paper briefly reviewed the research progresses of earthquake prediction and/or forecasting in China during 1999~2002, especially focused on mid-short term prediction methods with approaches of seismicity, crustal deformation, electromagnetism, ground water and the analysis by synthesis, and the application of the methods to the practice of earthquake prediction.
文摘In this paper we aim to analyse temporal variation of CD4 cell counts for HIV-infected individuals under antiretroviral therapy by using statistical methods. This is achieved by resorting to recursive binary regression tree approach [1]?[2]. This approach has made it possible to highlight the existence of several segments of the population of interest described by the interactions between the predictive covariates of the response to the treatment regimen.
文摘A novel text independent speaker identification system is proposed. In the proposed system, the 12-order perceptual linear predictive cepstrum and their delta coefficients in the span of five frames are extracted from the segmented speech based on the method of pitch synchronous analysis. The Fisher ratios of the original coefficients then be calculated, and the coefficients whose Fisher ratios are bigger are selected to form the 13-dimensional feature vectors of speaker. The Gaussian mixture model is used to model the speakers. The experimental results show that the identification accuracy of the proposed system is obviously better than that of the systems based on other conventional coefficients like the linear predictive cepstral coefficients and the Mel-frequency cepstral coefficients.
文摘水质指标具有多元相关性、时序性和非线性的特点,为有效预测河流水质变化,针对水质数据存在缺失和异常的问题,提出基于灰色关联分析-门控循环单元(Grey Relational Analysis-Gated Recurrent Unit, GRA-GRU)的水质预测模型。以淮河流域水质数据为样本,使用线性插值修补缺失数据和剔除的异常数据。使用灰色关联分析计算不同水质指标间的相关性,选择高相关性的水质指标以确定输入变量,并使用门控循环单元(Gated Recurrent Unit, GRU)预测不同的水质指标。将GRA-GRU的预测结果与反向传播神经网络(Back Propagation Neural Network, BPNN)、循环神经网络(Recurrent Neural Network, RNN)、长短期记忆神经网络(Long Short Term Memory, LSTM)、GRU及灰色关联分析-长短期记忆神经网络(Grey Relational Analysis-Long Short Term Memory, GRA-LSTM)进行对比分析,结果显示GRA-GRU在不同水质指标预测上具有较好的适应性,可以有效降低预测误差。其中,与其他模型相比,GRA-GRU预测的化学需氧量在均方根误差上分别降低了3.617%、0.681%、0.478%、1.505%和0.471%。
文摘Based on the quasi-measured values of tropospheric refraction,the relation betweenand △R as expressed in Eq.(3)is proved,and according to the stable feature of refractivityat 9 km above sea level,a simplified method for predicting tropospheric range error is analysed.Some new parameters for linear regression analysis of tropospheric range error are given also.
文摘A continuous-time Model Predictive Controller was proposed using Kautz function in order to improve the performance of Load Frequency Control(LFC).A dynamic model of an interconnected power system was used for Model Predictive Controller(MPC)design.MPC predicts the future trajectory of the dynamic model by calculating the optimal closed loop feedback gain matrix.In this paper,the optimal closed loop feedback gain matrix was calculated using Kautz function.Being an Orthonormal Basis Function(OBF),Kautz function has an advantage of solving complex pole-based nonlinear system.Genetic Algorithm(GA)was applied to optimally tune the Kautz function-based MPC.A constraint based on phase plane analysis was implemented with the cost function in order to improve the robustness of the Kautz function-based MPC.The proposed method was simulated with three area interconnected power system and the efficiency of the proposed method was measured and exhibited by comparing with conventional Proportional and Integral(PI)controller and Linear Quadratic Regulation(LQR).