传统的LQG(linear quadratic Gauss)控制器无法满足系统的鲁棒性要求,因此文章采用LQG/LTR(Loop transfer recovery)理论设计了机翼主动颤振抑制鲁棒控制器。文中1、2部分建立了气动伺服弹性系统模型并推导了LQG控制器,第3部分基于LQG/...传统的LQG(linear quadratic Gauss)控制器无法满足系统的鲁棒性要求,因此文章采用LQG/LTR(Loop transfer recovery)理论设计了机翼主动颤振抑制鲁棒控制器。文中1、2部分建立了气动伺服弹性系统模型并推导了LQG控制器,第3部分基于LQG/LTR理论分2步完成了鲁棒控制器的设计。利用典型的气动伺服弹性系统模型,分别采用LQG/LTR控制器和LQG控制器对机翼颤振进行抑制,仿真结果表明,LQG/LTR控制器的性能远远优于LQG控制器。展开更多
针对变速变桨风力机实际工况下同时存在外界输入噪声及内部测量噪声的问题,采用线性二次型/回路传输恢复(Linear quadratic Gauss/loop transfer recovery,LQG/LTR)方法设计改善某风力机叶轮转速及塔架前后弯曲模态的控制器,增强风力机...针对变速变桨风力机实际工况下同时存在外界输入噪声及内部测量噪声的问题,采用线性二次型/回路传输恢复(Linear quadratic Gauss/loop transfer recovery,LQG/LTR)方法设计改善某风力机叶轮转速及塔架前后弯曲模态的控制器,增强风力机系统在随机干扰下的鲁棒性能。根据风力机空气动力学的圆盘理论和叶素理论,求解风力机受到的扭矩和推力。基于变速变桨风力机的线化模型,分别进行LQG和LQG/LTR控制器设计,分别仿真输出风力机的叶轮转速、塔架塔顶位移和桨距角时间变化曲线。仿真结果表明,LQG/LTR控制器在满足系统控制目标的情况下,可显著提高风力机系统的鲁棒性能及稳定性。展开更多
文摘传统的LQG(linear quadratic Gauss)控制器无法满足系统的鲁棒性要求,因此文章采用LQG/LTR(Loop transfer recovery)理论设计了机翼主动颤振抑制鲁棒控制器。文中1、2部分建立了气动伺服弹性系统模型并推导了LQG控制器,第3部分基于LQG/LTR理论分2步完成了鲁棒控制器的设计。利用典型的气动伺服弹性系统模型,分别采用LQG/LTR控制器和LQG控制器对机翼颤振进行抑制,仿真结果表明,LQG/LTR控制器的性能远远优于LQG控制器。
文摘针对变速变桨风力机实际工况下同时存在外界输入噪声及内部测量噪声的问题,采用线性二次型/回路传输恢复(Linear quadratic Gauss/loop transfer recovery,LQG/LTR)方法设计改善某风力机叶轮转速及塔架前后弯曲模态的控制器,增强风力机系统在随机干扰下的鲁棒性能。根据风力机空气动力学的圆盘理论和叶素理论,求解风力机受到的扭矩和推力。基于变速变桨风力机的线化模型,分别进行LQG和LQG/LTR控制器设计,分别仿真输出风力机的叶轮转速、塔架塔顶位移和桨距角时间变化曲线。仿真结果表明,LQG/LTR控制器在满足系统控制目标的情况下,可显著提高风力机系统的鲁棒性能及稳定性。