A parametric variational principle and the corresponding numerical algo- rithm are proposed to solve a linear-quadratic (LQ) optimal control problem with control inequality constraints. Based on the parametric varia...A parametric variational principle and the corresponding numerical algo- rithm are proposed to solve a linear-quadratic (LQ) optimal control problem with control inequality constraints. Based on the parametric variational principle, this control prob- lem is transformed into a set of Hamiltonian canonical equations coupled with the linear complementarity equations, which are solved by a linear complementarity solver in the discrete-time domain. The costate variable information is also evaluated by the proposed method. The parametric variational algorithm proposed in this paper is suitable for both time-invariant and time-varying systems. Two numerical examples are used to test the validity of the proposed method. The proposed algorithm is used to astrodynamics to solve a practical optimal control problem for rendezvousing spacecrafts with a finite low thrust. The numerical simulations show that the parametric variational algorithm is ef- fective for LQ optimal control problems with control inequality constraints.展开更多
This paper presents a global optimization approach to solving linear non-quadratic optimal control problems. The main work is to construct a differential flow for finding a global minimizer of the Hamiltonian function...This paper presents a global optimization approach to solving linear non-quadratic optimal control problems. The main work is to construct a differential flow for finding a global minimizer of the Hamiltonian function over a Euclid space. With the Pontryagin principle, the optimal control is characterized by a function of the adjoint variable and is obtained by solving a Hamiltonian differential boundary value problem. For computing an optimal control, an algorithm for numerical practice is given with the description of an example.展开更多
This paper focuses on linear-quadratic(LQ)optimal control for a class of systems governed by first-order hyperbolic partial differential equations(PDEs).Different from most of the previous works,an approach of discret...This paper focuses on linear-quadratic(LQ)optimal control for a class of systems governed by first-order hyperbolic partial differential equations(PDEs).Different from most of the previous works,an approach of discretization-then-continuousization is proposed in this paper to cope with the infinite-dimensional nature of PDE systems.The contributions of this paper consist of the following aspects:(1)The differential Riccati equations and the solvability condition of the LQ optimal control problems are obtained via the discretization-then-continuousization method.(2)A numerical calculation way of the differential Riccati equations and a practical design way of the optimal controller are proposed.Meanwhile,the relationship between the optimal costate and the optimal state is established by solving a set of forward and backward partial difference equations(FBPDEs).(3)The correctness of the method used in this paper is verified by a complementary continuous method and the comparative analysis with the existing operator results is presented.It is shown that the proposed results not only contain the classic results of the standard LQ control problem of systems governed by ordinary differential equations as a special case,but also support the existing operator results and give a more convenient form of computation.展开更多
In this paper, an efficient computational approach is proposed to solve the discrete time nonlinear stochastic optimal control problem. For this purpose, a linear quadratic regulator model, which is a linear dynamical...In this paper, an efficient computational approach is proposed to solve the discrete time nonlinear stochastic optimal control problem. For this purpose, a linear quadratic regulator model, which is a linear dynamical system with the quadratic criterion cost function, is employed. In our approach, the model-based optimal control problem is reformulated into the input-output equations. In this way, the Hankel matrix and the observability matrix are constructed. Further, the sum squares of output error is defined. In these point of views, the least squares optimization problem is introduced, so as the differences between the real output and the model output could be calculated. Applying the first-order derivative to the sum squares of output error, the necessary condition is then derived. After some algebraic manipulations, the optimal control law is produced. By substituting this control policy into the input-output equations, the model output is updated iteratively. For illustration, an example of the direct current and alternating current converter problem is studied. As a result, the model output trajectory of the least squares solution is close to the real output with the smallest sum squares of output error. In conclusion, the efficiency and the accuracy of the approach proposed are highly presented.展开更多
This paper presents a contribution related to the control of nonlinear variable-speed marine current turbine(MCT)without pitch operating below the rated marine current speed.Given that the operation of the MCT can be ...This paper presents a contribution related to the control of nonlinear variable-speed marine current turbine(MCT)without pitch operating below the rated marine current speed.Given that the operation of the MCT can be divided into several operating zones on the basis of the marine current speed,the system control objectives are different for each zone.To deal with this issue,we develop a new control approach based on a linear quadratic regulator with variable generator torque.Our proposed approach enables the optimization of the rotational speed of the turbine,which maximizes the power extracted by the MCT and minimizes the transient loads on the drivetrain.The novelty of our study is the use of a real profile of marine current speed from the northern coasts of Morocco.The simulation results obtained using MATLAB Simulink indicate the effectiveness and robustness of the proposed control approach on the electrical and mechanical parameters with the variations of marine current speed.展开更多
Double cost function linear quadratic regulator (DLQR) is developed from LQR theory to solve an optimal control problem with a general nonlinear cost function. In addition to the traditional LQ cost function, anothe...Double cost function linear quadratic regulator (DLQR) is developed from LQR theory to solve an optimal control problem with a general nonlinear cost function. In addition to the traditional LQ cost function, another free form cost function was introduced to express the physical need plainly and optimize weights of LQ cost function using the search algorithms. As an instance, DLQR was applied in determining the control input in the front steering angle compensation control (FSAC) model for heavy duty vehicles. The brief simulations show that DLQR is powerful enough to specify the engineering requirements correctly and balance many factors effectively. The concept and applicable field of LQR are expanded by DLQR to optimize the system with a free form cost function.展开更多
In this paper, adaptive linear quadratic regulator(LQR) is proposed for continuous-time systems with uncertain dynamics. The dynamic state-feedback controller uses inputoutput data along the system trajectory to conti...In this paper, adaptive linear quadratic regulator(LQR) is proposed for continuous-time systems with uncertain dynamics. The dynamic state-feedback controller uses inputoutput data along the system trajectory to continuously adapt and converge to the optimal controller. The result differs from previous results in that the adaptive optimal controller is designed without the knowledge of the system dynamics and an initial stabilizing policy. Further, the controller is updated continuously using input-output data, as opposed to the commonly used switched/intermittent updates which can potentially lead to stability issues. An online state derivative estimator facilitates the design of a model-free controller. Gradient-based update laws are developed for online estimation of the optimal gain. Uniform exponential stability of the closed-loop system is established using the Lyapunov-based analysis, and a simulation example is provided to validate the theoretical contribution.展开更多
Abstract-The conventional optimal tracking control method cannot realize decoupling control of linear systems with a strong coupling property. To solve this problem, in this paper, an optimal decoupling control method...Abstract-The conventional optimal tracking control method cannot realize decoupling control of linear systems with a strong coupling property. To solve this problem, in this paper, an optimal decoupling control method is proposed, which can simultaneousiy provide optimal performance. The optimal decoupling controller is composed of an inner-loop decoupling controller and an outer-loop optimal tracking controller. First, by introducing one virtual control variable, the original differential equation on state is converted to a generalized system on output. Then, by introducing the other virtual control variable, and viewing the coupling terms as the measurable disturbances, the generalized system is open-loop decoupled. Finally, for the decoupled system, the optimal tracking control method is used. It is proved that the decoupling control is optimal for a certain performance index. Simulations on a ball mill coal-pulverizing system are conducted. The results show the effectiveness and superiority of the proposed method as compared with the conventional optimal quadratic tracking (LQT) control method.展开更多
This paper presents a method to design a control scheme for nonlinear systems using fuzzy optimal control.In the design process,the nonlinear system is first converted into local subsystems using sector non linearity ...This paper presents a method to design a control scheme for nonlinear systems using fuzzy optimal control.In the design process,the nonlinear system is first converted into local subsystems using sector non linearity approach of Takagi Sugeno(T S)fuzzy modeling.For each local subsystem,an optimal control is designed.Then,the parameters of local controllers are defuzzified to construct a global optimal controller.To prove the effectiveness of this control scheme,simulations are performed using the mathematical model of Esso Osaka tanker ship for set point regulation with and without disturbance and reference tracking.In addition,the simulation results are compared with that of a PID controller for further verification and validation.It has been shown that the proposed optimal controller can be used for the nonlinear ship steering with good rise time,zero steady state error and fast settling time.展开更多
In this paper, tile authors first study two kinds of stochastic differential equations (SDEs) with Levy processes as noise source. Based on the existence and uniqueness of the solutions of these SDEs and multi-dimen...In this paper, tile authors first study two kinds of stochastic differential equations (SDEs) with Levy processes as noise source. Based on the existence and uniqueness of the solutions of these SDEs and multi-dimensional backward stochastic differential equations (BSDEs) driven by Levy pro- cesses, the authors proceed to study a stochastic linear quadratic (LQ) optimal control problem with a Levy process, where the cost weighting matrices of the state and control are allowed to be indefinite. One kind of new stochastic Riccati equation that involves equality and inequality constraints is derived from the idea of square completion and its solvability is proved to be sufficient for the well-posedness and the existence of optimal control which can be of either state feedback or open-loop form of the LQ problems. Moreover, the authors obtain the existence and uniqueness of the solution to the Riccati equation for some special cases. Finally, two examples are presented to illustrate these theoretical results.展开更多
By using Impulsive Maximum Principal and three stage optimization method,this paper discusses optimization problems for linear impulsive switched systems with hybridcontrols, which includes continuous control and impu...By using Impulsive Maximum Principal and three stage optimization method,this paper discusses optimization problems for linear impulsive switched systems with hybridcontrols, which includes continuous control and impulsive control. The linear quadratic optimizationproblems without constraints such as optimal hybrid control, optimal stability and optimalswitching instants are addressed in detail. These results are applicable to optimal control problemsin economics,mechanics, and management.展开更多
In this paper,the problem of inverse quadratic optimal control over fnite time-horizon for discrete-time linear systems is considered.Our goal is to recover the corresponding quadratic objective function using noisy o...In this paper,the problem of inverse quadratic optimal control over fnite time-horizon for discrete-time linear systems is considered.Our goal is to recover the corresponding quadratic objective function using noisy observations.First,the identifability of the model structure for the inverse optimal control problem is analyzed under relative degree assumption and we show the model structure is strictly globally identifable.Next,we study the inverse optimal control problem whose initial state distribution and the observation noise distribution are unknown,yet the exact observations on the initial states are available.We formulate the problem as a risk minimization problem and approximate the problem using empirical average.It is further shown that the solution to the approximated problem is statistically consistent under the assumption of relative degrees.We then study the case where the exact observations on the initial states are not available,yet the observation noises are known to be white Gaussian distributed and the distribution of the initial state is also Gaussian(with unknown mean and covariance).EM-algorithm is used to estimate the parameters in the objective function.The efectiveness of our results are demonstrated by numerical examples.展开更多
An optimal control problem is studied for a linear mean-field stochastic differential equation with a quadratic cost functional.The coefficients and the weighting matrices in the cost functional are all assumed to be ...An optimal control problem is studied for a linear mean-field stochastic differential equation with a quadratic cost functional.The coefficients and the weighting matrices in the cost functional are all assumed to be deterministic.Closedloop strategies are introduced,which require to be independent of initial states;and such a nature makes it very useful and convenient in applications.In this paper,the existence of an optimal closed-loop strategy for the system(also called the closedloop solvability of the problem)is characterized by the existence of a regular solution to the coupled two(generalized)Riccati equations,together with some constraints on the adapted solution to a linear backward stochastic differential equation and a linear terminal value problem of an ordinary differential equation.展开更多
We consider the optimal control problem for a linear conditional McKeanVlasov equation with quadratic cost functional.The coefficients of the system and the weighting matrices in the cost functional are allowed to be ...We consider the optimal control problem for a linear conditional McKeanVlasov equation with quadratic cost functional.The coefficients of the system and the weighting matrices in the cost functional are allowed to be adapted processes with respect to the common noise filtration.Semi closed-loop strategies are introduced,and following the dynamic programming approach in(Pham and Wei,Dynamic programming for optimal control of stochastic McKean-Vlasov dynamics,2016),we solve the problem and characterize time-consistent optimal control by means of a system of decoupled backward stochastic Riccati differential equations.We present several financial applications with explicit solutions,and revisit,in particular,optimal tracking problems with price impact,and the conditional mean-variance portfolio selection in an incomplete market model.展开更多
In recent years, various cable-driven parallel robots have been investigated for their advantages, such as low structural weight, high acceleration, and large work- space, over serial and conventional parallel systems...In recent years, various cable-driven parallel robots have been investigated for their advantages, such as low structural weight, high acceleration, and large work- space, over serial and conventional parallel systems. However, the use of cables lowers the stiffness of these robots, which in turn may decrease motion accuracy. A linear quadratic (LQ) optimal controller can provide all the states of a system for the feedback, such as position and velocity. Thus, the application of such an optimal controller in cable-driven parallel robots can result in more efficient and accurate motion compared to the performance of classical controllers such as the proportional-integral-derivative controller. This paper presents an approach to apply the LQ optimal controller on cabledriven parallel robots. To employ the optimal control theory, the static and dynamic modeling of a 3-DOF planar cable-driven parallel robot (Feriba-3) is developed. The synthesis of the LQ optimal control is described, and the significant experimental results are presented and discussed.展开更多
In this paper,linear quadratic(LQ)optimal control problems are investigated for two types of uncertain random systems which consider the coefficient of the perturbed term as a constant vector or a vector-valued functi...In this paper,linear quadratic(LQ)optimal control problems are investigated for two types of uncertain random systems which consider the coefficient of the perturbed term as a constant vector or a vector-valued function of state vector and control vector.First,the uncertain random optimal control model is established under expected value criterion.Second,based on Bellman’s principle,recurrence equations are presented for settling such problem.Then by applying the recurrence equations and chance theory,the analytical expressions of the optimal results for the LQ problems are derived.Furthermore,some examples and an application are given to show the effectiveness of our results.展开更多
In this paper, the inverse linear quadratic(LQ) problem over finite time-horizon is studied.Given the output observations of a dynamic process, the goal is to recover the corresponding LQ cost function. Firstly, by co...In this paper, the inverse linear quadratic(LQ) problem over finite time-horizon is studied.Given the output observations of a dynamic process, the goal is to recover the corresponding LQ cost function. Firstly, by considering the inverse problem as an identification problem, its model structure is shown to be strictly globally identifiable under the assumption of system invertibility. Next, in the noiseless case a necessary and sufficient condition is proposed for the solvability of a positive semidefinite weighting matrix and its unique solution is obtained with two proposed algorithms under the condition of persistent excitation. Furthermore, a residual optimization problem is also formulated to solve a best-fit approximate cost function from sub-optimal observations. Finally, numerical simulations are used to demonstrate the effectiveness of the proposed methods.展开更多
The selection of weighting matrix in design of the linear quadratic optimal controller is an important topic in the control theory. In this paper, an approach based on genetic algorithm is presented for selecting the ...The selection of weighting matrix in design of the linear quadratic optimal controller is an important topic in the control theory. In this paper, an approach based on genetic algorithm is presented for selecting the weighting matrix for the optimal controller. Genetic algorithm is adaptive heuristic search algorithm premised on the evolutionary ideas of natural selection and genetic. In this algorithm, the fitness function is used to evaluate individuals and reproductive success varies with fitness. In the design of the linear quadratic optimal controller, the fitness function has relation to the anticipated step response of the system. Not only can the controller designed by this approach meet the demand of the performance indexes of linear quadratic controller, but also satisfy the anticipated step response of close-loop system. The method possesses a higher calculating efficiency and provides technical support for the optimal controller in engineering application. The simulation of a three-order single-input single-output (SISO) system has demonstrated the feasibility and validity of the approach.展开更多
基金supported by the National Natural Science Foundation of China(Nos.11102031 and 11272076)the Fundamental Research Funds for Central Universities(No.DUT13LK25)+2 种基金the Key Laboratory Fund of Liaoning Province(No.L2013015)the China Postdoctoral Science Foundation(No.2014M550155)the State Key Laboratory of Mechanics and Control of Mechanical Structures(Nanjing University of Aeronautics and Astronautics)(No.MCMS-0114G02)
文摘A parametric variational principle and the corresponding numerical algo- rithm are proposed to solve a linear-quadratic (LQ) optimal control problem with control inequality constraints. Based on the parametric variational principle, this control prob- lem is transformed into a set of Hamiltonian canonical equations coupled with the linear complementarity equations, which are solved by a linear complementarity solver in the discrete-time domain. The costate variable information is also evaluated by the proposed method. The parametric variational algorithm proposed in this paper is suitable for both time-invariant and time-varying systems. Two numerical examples are used to test the validity of the proposed method. The proposed algorithm is used to astrodynamics to solve a practical optimal control problem for rendezvousing spacecrafts with a finite low thrust. The numerical simulations show that the parametric variational algorithm is ef- fective for LQ optimal control problems with control inequality constraints.
文摘This paper presents a global optimization approach to solving linear non-quadratic optimal control problems. The main work is to construct a differential flow for finding a global minimizer of the Hamiltonian function over a Euclid space. With the Pontryagin principle, the optimal control is characterized by a function of the adjoint variable and is obtained by solving a Hamiltonian differential boundary value problem. For computing an optimal control, an algorithm for numerical practice is given with the description of an example.
基金supported by the National Natural Science Foundation of China under Grant Nos.61821004 and 62250056the Natural Science Foundation of Shandong Province under Grant Nos.ZR2021ZD14 and ZR2021JQ24+1 种基金Science and Technology Project of Qingdao West Coast New Area under Grant Nos.2019-32,2020-20,2020-1-4,High-level Talent Team Project of Qingdao West Coast New Area under Grant No.RCTDJC-2019-05Key Research and Development Program of Shandong Province under Grant No.2020CXGC01208.
文摘This paper focuses on linear-quadratic(LQ)optimal control for a class of systems governed by first-order hyperbolic partial differential equations(PDEs).Different from most of the previous works,an approach of discretization-then-continuousization is proposed in this paper to cope with the infinite-dimensional nature of PDE systems.The contributions of this paper consist of the following aspects:(1)The differential Riccati equations and the solvability condition of the LQ optimal control problems are obtained via the discretization-then-continuousization method.(2)A numerical calculation way of the differential Riccati equations and a practical design way of the optimal controller are proposed.Meanwhile,the relationship between the optimal costate and the optimal state is established by solving a set of forward and backward partial difference equations(FBPDEs).(3)The correctness of the method used in this paper is verified by a complementary continuous method and the comparative analysis with the existing operator results is presented.It is shown that the proposed results not only contain the classic results of the standard LQ control problem of systems governed by ordinary differential equations as a special case,but also support the existing operator results and give a more convenient form of computation.
文摘In this paper, an efficient computational approach is proposed to solve the discrete time nonlinear stochastic optimal control problem. For this purpose, a linear quadratic regulator model, which is a linear dynamical system with the quadratic criterion cost function, is employed. In our approach, the model-based optimal control problem is reformulated into the input-output equations. In this way, the Hankel matrix and the observability matrix are constructed. Further, the sum squares of output error is defined. In these point of views, the least squares optimization problem is introduced, so as the differences between the real output and the model output could be calculated. Applying the first-order derivative to the sum squares of output error, the necessary condition is then derived. After some algebraic manipulations, the optimal control law is produced. By substituting this control policy into the input-output equations, the model output is updated iteratively. For illustration, an example of the direct current and alternating current converter problem is studied. As a result, the model output trajectory of the least squares solution is close to the real output with the smallest sum squares of output error. In conclusion, the efficiency and the accuracy of the approach proposed are highly presented.
文摘This paper presents a contribution related to the control of nonlinear variable-speed marine current turbine(MCT)without pitch operating below the rated marine current speed.Given that the operation of the MCT can be divided into several operating zones on the basis of the marine current speed,the system control objectives are different for each zone.To deal with this issue,we develop a new control approach based on a linear quadratic regulator with variable generator torque.Our proposed approach enables the optimization of the rotational speed of the turbine,which maximizes the power extracted by the MCT and minimizes the transient loads on the drivetrain.The novelty of our study is the use of a real profile of marine current speed from the northern coasts of Morocco.The simulation results obtained using MATLAB Simulink indicate the effectiveness and robustness of the proposed control approach on the electrical and mechanical parameters with the variations of marine current speed.
文摘Double cost function linear quadratic regulator (DLQR) is developed from LQR theory to solve an optimal control problem with a general nonlinear cost function. In addition to the traditional LQ cost function, another free form cost function was introduced to express the physical need plainly and optimize weights of LQ cost function using the search algorithms. As an instance, DLQR was applied in determining the control input in the front steering angle compensation control (FSAC) model for heavy duty vehicles. The brief simulations show that DLQR is powerful enough to specify the engineering requirements correctly and balance many factors effectively. The concept and applicable field of LQR are expanded by DLQR to optimize the system with a free form cost function.
文摘In this paper, adaptive linear quadratic regulator(LQR) is proposed for continuous-time systems with uncertain dynamics. The dynamic state-feedback controller uses inputoutput data along the system trajectory to continuously adapt and converge to the optimal controller. The result differs from previous results in that the adaptive optimal controller is designed without the knowledge of the system dynamics and an initial stabilizing policy. Further, the controller is updated continuously using input-output data, as opposed to the commonly used switched/intermittent updates which can potentially lead to stability issues. An online state derivative estimator facilitates the design of a model-free controller. Gradient-based update laws are developed for online estimation of the optimal gain. Uniform exponential stability of the closed-loop system is established using the Lyapunov-based analysis, and a simulation example is provided to validate the theoretical contribution.
基金supported by the National Natural Science Foundation of China(61573090)the Research Funds for the Central Universities(N130108001)
文摘Abstract-The conventional optimal tracking control method cannot realize decoupling control of linear systems with a strong coupling property. To solve this problem, in this paper, an optimal decoupling control method is proposed, which can simultaneousiy provide optimal performance. The optimal decoupling controller is composed of an inner-loop decoupling controller and an outer-loop optimal tracking controller. First, by introducing one virtual control variable, the original differential equation on state is converted to a generalized system on output. Then, by introducing the other virtual control variable, and viewing the coupling terms as the measurable disturbances, the generalized system is open-loop decoupled. Finally, for the decoupled system, the optimal tracking control method is used. It is proved that the decoupling control is optimal for a certain performance index. Simulations on a ball mill coal-pulverizing system are conducted. The results show the effectiveness and superiority of the proposed method as compared with the conventional optimal quadratic tracking (LQT) control method.
基金supported in part by the National Natural Science Foundation of China (No. 61751210)the Jiangsu Natural Science Foundation of China (No. BK20171417)the Fundamental Research Funds for the Central Universities(No. NG2019002)
文摘This paper presents a method to design a control scheme for nonlinear systems using fuzzy optimal control.In the design process,the nonlinear system is first converted into local subsystems using sector non linearity approach of Takagi Sugeno(T S)fuzzy modeling.For each local subsystem,an optimal control is designed.Then,the parameters of local controllers are defuzzified to construct a global optimal controller.To prove the effectiveness of this control scheme,simulations are performed using the mathematical model of Esso Osaka tanker ship for set point regulation with and without disturbance and reference tracking.In addition,the simulation results are compared with that of a PID controller for further verification and validation.It has been shown that the proposed optimal controller can be used for the nonlinear ship steering with good rise time,zero steady state error and fast settling time.
基金This work was supported by the National Basic Research Program of China (973 Program) under Grant No. 2007CB814904the Natural Science Foundation of China under Grant No. 10671112+1 种基金Shandong Province under Grant No. Z2006A01Research Fund for the Doctoral Program of Higher Education of China under Grant No. 20060422018
文摘In this paper, tile authors first study two kinds of stochastic differential equations (SDEs) with Levy processes as noise source. Based on the existence and uniqueness of the solutions of these SDEs and multi-dimensional backward stochastic differential equations (BSDEs) driven by Levy pro- cesses, the authors proceed to study a stochastic linear quadratic (LQ) optimal control problem with a Levy process, where the cost weighting matrices of the state and control are allowed to be indefinite. One kind of new stochastic Riccati equation that involves equality and inequality constraints is derived from the idea of square completion and its solvability is proved to be sufficient for the well-posedness and the existence of optimal control which can be of either state feedback or open-loop form of the LQ problems. Moreover, the authors obtain the existence and uniqueness of the solution to the Riccati equation for some special cases. Finally, two examples are presented to illustrate these theoretical results.
文摘By using Impulsive Maximum Principal and three stage optimization method,this paper discusses optimization problems for linear impulsive switched systems with hybridcontrols, which includes continuous control and impulsive control. The linear quadratic optimizationproblems without constraints such as optimal hybrid control, optimal stability and optimalswitching instants are addressed in detail. These results are applicable to optimal control problemsin economics,mechanics, and management.
文摘In this paper,the problem of inverse quadratic optimal control over fnite time-horizon for discrete-time linear systems is considered.Our goal is to recover the corresponding quadratic objective function using noisy observations.First,the identifability of the model structure for the inverse optimal control problem is analyzed under relative degree assumption and we show the model structure is strictly globally identifable.Next,we study the inverse optimal control problem whose initial state distribution and the observation noise distribution are unknown,yet the exact observations on the initial states are available.We formulate the problem as a risk minimization problem and approximate the problem using empirical average.It is further shown that the solution to the approximated problem is statistically consistent under the assumption of relative degrees.We then study the case where the exact observations on the initial states are not available,yet the observation noises are known to be white Gaussian distributed and the distribution of the initial state is also Gaussian(with unknown mean and covariance).EM-algorithm is used to estimate the parameters in the objective function.The efectiveness of our results are demonstrated by numerical examples.
基金supported by Hong Kong RGC under grants 519913,15209614 and 15224215Jingrui Sun was partially supported by the National Natural Science Foundation of China(11401556)+1 种基金the Fundamental Research Funds for the Central Universities(WK 2040000012)Jiongmin Yong was partially supported by NSF DMS-1406776.
文摘An optimal control problem is studied for a linear mean-field stochastic differential equation with a quadratic cost functional.The coefficients and the weighting matrices in the cost functional are all assumed to be deterministic.Closedloop strategies are introduced,which require to be independent of initial states;and such a nature makes it very useful and convenient in applications.In this paper,the existence of an optimal closed-loop strategy for the system(also called the closedloop solvability of the problem)is characterized by the existence of a regular solution to the coupled two(generalized)Riccati equations,together with some constraints on the adapted solution to a linear backward stochastic differential equation and a linear terminal value problem of an ordinary differential equation.
基金work is part of the ANR project CAESARS(ANR-15-CE05-0024)lso supported by FiME(Finance for Energy Market Research Centre)and the“Finance et Developpement Durable-Approches Quantitatives”EDF-CACIB Chair。
文摘We consider the optimal control problem for a linear conditional McKeanVlasov equation with quadratic cost functional.The coefficients of the system and the weighting matrices in the cost functional are allowed to be adapted processes with respect to the common noise filtration.Semi closed-loop strategies are introduced,and following the dynamic programming approach in(Pham and Wei,Dynamic programming for optimal control of stochastic McKean-Vlasov dynamics,2016),we solve the problem and characterize time-consistent optimal control by means of a system of decoupled backward stochastic Riccati differential equations.We present several financial applications with explicit solutions,and revisit,in particular,optimal tracking problems with price impact,and the conditional mean-variance portfolio selection in an incomplete market model.
文摘In recent years, various cable-driven parallel robots have been investigated for their advantages, such as low structural weight, high acceleration, and large work- space, over serial and conventional parallel systems. However, the use of cables lowers the stiffness of these robots, which in turn may decrease motion accuracy. A linear quadratic (LQ) optimal controller can provide all the states of a system for the feedback, such as position and velocity. Thus, the application of such an optimal controller in cable-driven parallel robots can result in more efficient and accurate motion compared to the performance of classical controllers such as the proportional-integral-derivative controller. This paper presents an approach to apply the LQ optimal controller on cabledriven parallel robots. To employ the optimal control theory, the static and dynamic modeling of a 3-DOF planar cable-driven parallel robot (Feriba-3) is developed. The synthesis of the LQ optimal control is described, and the significant experimental results are presented and discussed.
基金the National Natural Science Foundation of China under Grant No.61673011the Postgraduate Research and Practice Innovation Program of Jiangsu Province under Grant No.KYCX190249。
文摘In this paper,linear quadratic(LQ)optimal control problems are investigated for two types of uncertain random systems which consider the coefficient of the perturbed term as a constant vector or a vector-valued function of state vector and control vector.First,the uncertain random optimal control model is established under expected value criterion.Second,based on Bellman’s principle,recurrence equations are presented for settling such problem.Then by applying the recurrence equations and chance theory,the analytical expressions of the optimal results for the LQ problems are derived.Furthermore,some examples and an application are given to show the effectiveness of our results.
文摘In this paper, the inverse linear quadratic(LQ) problem over finite time-horizon is studied.Given the output observations of a dynamic process, the goal is to recover the corresponding LQ cost function. Firstly, by considering the inverse problem as an identification problem, its model structure is shown to be strictly globally identifiable under the assumption of system invertibility. Next, in the noiseless case a necessary and sufficient condition is proposed for the solvability of a positive semidefinite weighting matrix and its unique solution is obtained with two proposed algorithms under the condition of persistent excitation. Furthermore, a residual optimization problem is also formulated to solve a best-fit approximate cost function from sub-optimal observations. Finally, numerical simulations are used to demonstrate the effectiveness of the proposed methods.
文摘The selection of weighting matrix in design of the linear quadratic optimal controller is an important topic in the control theory. In this paper, an approach based on genetic algorithm is presented for selecting the weighting matrix for the optimal controller. Genetic algorithm is adaptive heuristic search algorithm premised on the evolutionary ideas of natural selection and genetic. In this algorithm, the fitness function is used to evaluate individuals and reproductive success varies with fitness. In the design of the linear quadratic optimal controller, the fitness function has relation to the anticipated step response of the system. Not only can the controller designed by this approach meet the demand of the performance indexes of linear quadratic controller, but also satisfy the anticipated step response of close-loop system. The method possesses a higher calculating efficiency and provides technical support for the optimal controller in engineering application. The simulation of a three-order single-input single-output (SISO) system has demonstrated the feasibility and validity of the approach.