Double cost function linear quadratic regulator (DLQR) is developed from LQR theory to solve an optimal control problem with a general nonlinear cost function. In addition to the traditional LQ cost function, anothe...Double cost function linear quadratic regulator (DLQR) is developed from LQR theory to solve an optimal control problem with a general nonlinear cost function. In addition to the traditional LQ cost function, another free form cost function was introduced to express the physical need plainly and optimize weights of LQ cost function using the search algorithms. As an instance, DLQR was applied in determining the control input in the front steering angle compensation control (FSAC) model for heavy duty vehicles. The brief simulations show that DLQR is powerful enough to specify the engineering requirements correctly and balance many factors effectively. The concept and applicable field of LQR are expanded by DLQR to optimize the system with a free form cost function.展开更多
The main idea behind the present research is to design a state-feedback controller for an underactuated nonlinear rotary inverted pendulum module by employing the linear quadratic regulator(LQR)technique using local a...The main idea behind the present research is to design a state-feedback controller for an underactuated nonlinear rotary inverted pendulum module by employing the linear quadratic regulator(LQR)technique using local approximation.The LQR is an excellent method for developing a controller for nonlinear systems.It provides optimal feedback to make the closed-loop system robust and stable,rejecting external disturbances.Model-based optimal controller for a nonlinear system such as a rotatory inverted pendulum has not been designed and implemented using Newton-Euler,Lagrange method,and local approximation.Therefore,implementing LQR to an underactuated nonlinear system was vital to design a stable controller.A mathematical model has been developed for the controller design by utilizing the Newton-Euler,Lagrange method.The nonlinear model has been linearized around an equilibrium point.Linear and nonlinear models have been compared to find the range in which linear and nonlinear models’behaviour is similar.MATLAB LQR function and system dynamics have been used to estimate the controller parameters.For the performance evaluation of the designed controller,Simulink has been used.Linear and nonlinear models have been simulated along with the designed controller.Simulations have been performed for the designed controller over the linear and nonlinear system under different conditions through varying system variables.The results show that the system is stable and robust enough to act against external disturbances.The controller maintains the rotary inverted pendulum in an upright position and rejects disruptions like falling under gravitational force or any external disturbance by adjusting the rotation of the horizontal link in both linear and nonlinear environments in a specific range.The controller has been practically designed and implemented.It is vivid from the results that the controller is robust enough to reject the disturbances in milliseconds and keeps the pendulum arm deflection angle to zero degrees.展开更多
The Rotary Inverted Pendulum(RIP)is a widely used underactuated mechanical system in various applications such as bipedal robots and skyscraper stabilization where attitude control presents a significant challenge.Des...The Rotary Inverted Pendulum(RIP)is a widely used underactuated mechanical system in various applications such as bipedal robots and skyscraper stabilization where attitude control presents a significant challenge.Despite the implementation of various control strategies to maintain equilibrium,optimally tuning control gains to effectively mitigate uncertain nonlinearities in system dynamics remains elusive.Existing methods frequently rely on extensive experimental data or the designer’s expertise,presenting a notable drawback.This paper proposes a novel tracking control approach for RIP,utilizing a Linear Quadratic Regulator(LQR)in combination with a reduced-order observer.Initially,the RIP system is mathematically modeled using the Newton-Euler-Lagrange method.Subsequently,a composite controller is devised that integrates an LQR for generating nominal control signals and a reduced-order observer for reconstructing unmeasured states.This approach enhances the controller’s robustness by eliminating differential terms from the observer,thereby attenuating unknown disturbances.Thorough numerical simulations and experimental evaluations demonstrate the system’s capability to maintain balance below50Hz and achieve precise tracking below1.4 rad,validating the effectiveness of the proposed control scheme.展开更多
Uncertainty is inherent and unavoidable in almost all engineering systems. It is of essential significance to deal with uncertainties by means of reliability approach and to achieve a reasonable balance between reliab...Uncertainty is inherent and unavoidable in almost all engineering systems. It is of essential significance to deal with uncertainties by means of reliability approach and to achieve a reasonable balance between reliability against uncertainties and system performance in the control design of uncertain systems. Nevertheless, reliability methods which can be used directly for analysis and synthesis of active control of structures in the presence of uncertainties remain to be developed, especially in non-probabilistic uncertainty situations. In the present paper, the issue of vibration con- trol of uncertain structures using linear quadratic regulator (LQR) approach is studied from the viewpoint of reliabil- ity. An efficient non-probabilistic robust reliability method for LQR-based static output feedback robust control of un- certain structures is presented by treating bounded uncertain parameters as interval variables. The optimal vibration con- troller design for uncertain structures is carried out by solv- ing a robust reliability-based optimization problem with the objective to minimize the quadratic performance index. The controller obtained may possess optimum performance un- der the condition that the controlled structure is robustly re- liable with respect to admissible uncertainties. The proposed method provides an essential basis for achieving a balance between robustness and performance in controller design ot uncertain structures. The presented formulations are in the framework of linear matrix inequality and can be carried out conveniently. Two numerical examples are provided to illustrate the effectiveness and feasibility of the present method.展开更多
The power system is prone to many emergency conditions which may lead to emergency state of operation with decay in the system frequency. The dramatic change in the frequency can result in cascaded failure of the syst...The power system is prone to many emergency conditions which may lead to emergency state of operation with decay in the system frequency. The dramatic change in the frequency can result in cascaded failure of the system. In order to avoid power system collapse, load shedding (LS) schemes are adopted with the optimal amount of load shed. This paper proposed a methodology in a two-area thermal-thermal system for finding the required amount of load to be shed for setting the frequency of the system within minimum allowable limits. The LS steps have been obtained based on the rate of change of frequency with the increase in load in steps. A systematic study has been conducted for three scenarios: the scheme with a conventional integral controller; the scheme with a linear quadratic regulator (LQR); and the scheme with an LQR and superconducting magnetic energy storage devices (SMES). A comparison of the results has been presented on the two-area system.展开更多
文摘Double cost function linear quadratic regulator (DLQR) is developed from LQR theory to solve an optimal control problem with a general nonlinear cost function. In addition to the traditional LQ cost function, another free form cost function was introduced to express the physical need plainly and optimize weights of LQ cost function using the search algorithms. As an instance, DLQR was applied in determining the control input in the front steering angle compensation control (FSAC) model for heavy duty vehicles. The brief simulations show that DLQR is powerful enough to specify the engineering requirements correctly and balance many factors effectively. The concept and applicable field of LQR are expanded by DLQR to optimize the system with a free form cost function.
文摘The main idea behind the present research is to design a state-feedback controller for an underactuated nonlinear rotary inverted pendulum module by employing the linear quadratic regulator(LQR)technique using local approximation.The LQR is an excellent method for developing a controller for nonlinear systems.It provides optimal feedback to make the closed-loop system robust and stable,rejecting external disturbances.Model-based optimal controller for a nonlinear system such as a rotatory inverted pendulum has not been designed and implemented using Newton-Euler,Lagrange method,and local approximation.Therefore,implementing LQR to an underactuated nonlinear system was vital to design a stable controller.A mathematical model has been developed for the controller design by utilizing the Newton-Euler,Lagrange method.The nonlinear model has been linearized around an equilibrium point.Linear and nonlinear models have been compared to find the range in which linear and nonlinear models’behaviour is similar.MATLAB LQR function and system dynamics have been used to estimate the controller parameters.For the performance evaluation of the designed controller,Simulink has been used.Linear and nonlinear models have been simulated along with the designed controller.Simulations have been performed for the designed controller over the linear and nonlinear system under different conditions through varying system variables.The results show that the system is stable and robust enough to act against external disturbances.The controller maintains the rotary inverted pendulum in an upright position and rejects disruptions like falling under gravitational force or any external disturbance by adjusting the rotation of the horizontal link in both linear and nonlinear environments in a specific range.The controller has been practically designed and implemented.It is vivid from the results that the controller is robust enough to reject the disturbances in milliseconds and keeps the pendulum arm deflection angle to zero degrees.
基金supported in part by the Youth Foundation of China University of Petroleum-Beijing at Karamay(under Grant No.XQZX20230038)the Karamay Innovative Talents Program(under Grant No.20212022HJCXRC0005).
文摘The Rotary Inverted Pendulum(RIP)is a widely used underactuated mechanical system in various applications such as bipedal robots and skyscraper stabilization where attitude control presents a significant challenge.Despite the implementation of various control strategies to maintain equilibrium,optimally tuning control gains to effectively mitigate uncertain nonlinearities in system dynamics remains elusive.Existing methods frequently rely on extensive experimental data or the designer’s expertise,presenting a notable drawback.This paper proposes a novel tracking control approach for RIP,utilizing a Linear Quadratic Regulator(LQR)in combination with a reduced-order observer.Initially,the RIP system is mathematically modeled using the Newton-Euler-Lagrange method.Subsequently,a composite controller is devised that integrates an LQR for generating nominal control signals and a reduced-order observer for reconstructing unmeasured states.This approach enhances the controller’s robustness by eliminating differential terms from the observer,thereby attenuating unknown disturbances.Thorough numerical simulations and experimental evaluations demonstrate the system’s capability to maintain balance below50Hz and achieve precise tracking below1.4 rad,validating the effectiveness of the proposed control scheme.
基金supported by the National Natural Science Foundation of China(51175510)
文摘Uncertainty is inherent and unavoidable in almost all engineering systems. It is of essential significance to deal with uncertainties by means of reliability approach and to achieve a reasonable balance between reliability against uncertainties and system performance in the control design of uncertain systems. Nevertheless, reliability methods which can be used directly for analysis and synthesis of active control of structures in the presence of uncertainties remain to be developed, especially in non-probabilistic uncertainty situations. In the present paper, the issue of vibration con- trol of uncertain structures using linear quadratic regulator (LQR) approach is studied from the viewpoint of reliabil- ity. An efficient non-probabilistic robust reliability method for LQR-based static output feedback robust control of un- certain structures is presented by treating bounded uncertain parameters as interval variables. The optimal vibration con- troller design for uncertain structures is carried out by solv- ing a robust reliability-based optimization problem with the objective to minimize the quadratic performance index. The controller obtained may possess optimum performance un- der the condition that the controlled structure is robustly re- liable with respect to admissible uncertainties. The proposed method provides an essential basis for achieving a balance between robustness and performance in controller design ot uncertain structures. The presented formulations are in the framework of linear matrix inequality and can be carried out conveniently. Two numerical examples are provided to illustrate the effectiveness and feasibility of the present method.
文摘The power system is prone to many emergency conditions which may lead to emergency state of operation with decay in the system frequency. The dramatic change in the frequency can result in cascaded failure of the system. In order to avoid power system collapse, load shedding (LS) schemes are adopted with the optimal amount of load shed. This paper proposed a methodology in a two-area thermal-thermal system for finding the required amount of load to be shed for setting the frequency of the system within minimum allowable limits. The LS steps have been obtained based on the rate of change of frequency with the increase in load in steps. A systematic study has been conducted for three scenarios: the scheme with a conventional integral controller; the scheme with a linear quadratic regulator (LQR); and the scheme with an LQR and superconducting magnetic energy storage devices (SMES). A comparison of the results has been presented on the two-area system.