A new interconnect network model for linear netw ork reduction is presented.In this new model,the ports of the interconnect network are classified into two groups:active and passive ports.After the classification,some...A new interconnect network model for linear netw ork reduction is presented.In this new model,the ports of the interconnect network are classified into two groups:active and passive ports.After the classification,some proprieties of the interconnect network are found to be redundant and pruned before reduction.For common interconnect networks,the scale of reduced models is smaller than 50% of the scale of previous works.展开更多
<strong>Purpose:</strong><span style="font-family:;" "=""><span style="font-family:Verdana;"> This study sought to review the characteristics, strengths, weak...<strong>Purpose:</strong><span style="font-family:;" "=""><span style="font-family:Verdana;"> This study sought to review the characteristics, strengths, weaknesses variants, applications areas and data types applied on the various </span><span><span style="font-family:Verdana;">Dimension Reduction techniques. </span><b><span style="font-family:Verdana;">Methodology: </span></b><span style="font-family:Verdana;">The most commonly used databases employed to search for the papers were ScienceDirect, Scopus, Google Scholar, IEEE Xplore and Mendeley. An integrative review was used for the study where </span></span></span><span style="font-family:Verdana;">341</span><span style="font-family:;" "=""><span style="font-family:Verdana;"> papers were reviewed. </span><b><span style="font-family:Verdana;">Results:</span></b><span style="font-family:Verdana;"> The linear techniques considered were Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA), Singular Value Decomposition (SVD), Latent Semantic Analysis (LSA), Locality Preserving Projections (LPP), Independent Component Analysis (ICA) and Project Pursuit (PP). The non-linear techniques which were developed to work with applications that ha</span></span><span style="font-family:Verdana;">ve</span><span style="font-family:Verdana;"> complex non-linear structures considered were Kernel Principal Component Analysis (KPC</span><span style="font-family:Verdana;">A), Multi</span><span style="font-family:Verdana;">-</span><span style="font-family:;" "=""><span style="font-family:Verdana;">dimensional Scaling (MDS), Isomap, Locally Linear Embedding (LLE), Self-Organizing Map (SOM), Latent Vector Quantization (LVQ), t-Stochastic </span><span style="font-family:Verdana;">neighbor embedding (t-SNE) and Uniform Manifold Approximation and Projection (UMAP). DR techniques can further be categorized into supervised, unsupervised and more recently semi-supervised learning methods. The supervised versions are the LDA and LVQ. All the other techniques are unsupervised. Supervised variants of PCA, LPP, KPCA and MDS have </span><span style="font-family:Verdana;">been developed. Supervised and semi-supervised variants of PP and t-SNE have also been developed and a semi supervised version of the LDA has been developed. </span><b><span style="font-family:Verdana;">Conclusion:</span></b><span style="font-family:Verdana;"> The various application areas, strengths, weaknesses and variants of the DR techniques were explored. The different data types that have been applied on the various DR techniques were also explored.</span></span>展开更多
This paper posits the desirability of a shift towards a holistic approach over reductionist approaches in the understanding of complex phenomena encountered in science and engineering. An argument based on set theory ...This paper posits the desirability of a shift towards a holistic approach over reductionist approaches in the understanding of complex phenomena encountered in science and engineering. An argument based on set theory is used to analyze three examples that illustrate the shortcomings of the reductionist approach. Using these cases as motivational points, a holistic approach to understand complex phenomena is proposed, whereby the human brain acts as a template to do so. Recognizing the need to maintain the transparency of the analysis provided by reductionism, a promising computational approach is offered by which the brain is used as a template for understanding complex phenomena. Some of the details of implementing this approach are also addressed.展开更多
文摘A new interconnect network model for linear netw ork reduction is presented.In this new model,the ports of the interconnect network are classified into two groups:active and passive ports.After the classification,some proprieties of the interconnect network are found to be redundant and pruned before reduction.For common interconnect networks,the scale of reduced models is smaller than 50% of the scale of previous works.
文摘<strong>Purpose:</strong><span style="font-family:;" "=""><span style="font-family:Verdana;"> This study sought to review the characteristics, strengths, weaknesses variants, applications areas and data types applied on the various </span><span><span style="font-family:Verdana;">Dimension Reduction techniques. </span><b><span style="font-family:Verdana;">Methodology: </span></b><span style="font-family:Verdana;">The most commonly used databases employed to search for the papers were ScienceDirect, Scopus, Google Scholar, IEEE Xplore and Mendeley. An integrative review was used for the study where </span></span></span><span style="font-family:Verdana;">341</span><span style="font-family:;" "=""><span style="font-family:Verdana;"> papers were reviewed. </span><b><span style="font-family:Verdana;">Results:</span></b><span style="font-family:Verdana;"> The linear techniques considered were Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA), Singular Value Decomposition (SVD), Latent Semantic Analysis (LSA), Locality Preserving Projections (LPP), Independent Component Analysis (ICA) and Project Pursuit (PP). The non-linear techniques which were developed to work with applications that ha</span></span><span style="font-family:Verdana;">ve</span><span style="font-family:Verdana;"> complex non-linear structures considered were Kernel Principal Component Analysis (KPC</span><span style="font-family:Verdana;">A), Multi</span><span style="font-family:Verdana;">-</span><span style="font-family:;" "=""><span style="font-family:Verdana;">dimensional Scaling (MDS), Isomap, Locally Linear Embedding (LLE), Self-Organizing Map (SOM), Latent Vector Quantization (LVQ), t-Stochastic </span><span style="font-family:Verdana;">neighbor embedding (t-SNE) and Uniform Manifold Approximation and Projection (UMAP). DR techniques can further be categorized into supervised, unsupervised and more recently semi-supervised learning methods. The supervised versions are the LDA and LVQ. All the other techniques are unsupervised. Supervised variants of PCA, LPP, KPCA and MDS have </span><span style="font-family:Verdana;">been developed. Supervised and semi-supervised variants of PP and t-SNE have also been developed and a semi supervised version of the LDA has been developed. </span><b><span style="font-family:Verdana;">Conclusion:</span></b><span style="font-family:Verdana;"> The various application areas, strengths, weaknesses and variants of the DR techniques were explored. The different data types that have been applied on the various DR techniques were also explored.</span></span>
基金sponsored by Prof. Dimitri Mavris and the Aerospace Systems Design Laboratory
文摘This paper posits the desirability of a shift towards a holistic approach over reductionist approaches in the understanding of complex phenomena encountered in science and engineering. An argument based on set theory is used to analyze three examples that illustrate the shortcomings of the reductionist approach. Using these cases as motivational points, a holistic approach to understand complex phenomena is proposed, whereby the human brain acts as a template to do so. Recognizing the need to maintain the transparency of the analysis provided by reductionism, a promising computational approach is offered by which the brain is used as a template for understanding complex phenomena. Some of the details of implementing this approach are also addressed.