This paper present a highly-integrated neurostimulator with an on-chip inductive power-recovery fron- tend and high-voltage stimulus generator. In particular, the power-recovery frontend includes a high-voltage full- ...This paper present a highly-integrated neurostimulator with an on-chip inductive power-recovery fron- tend and high-voltage stimulus generator. In particular, the power-recovery frontend includes a high-voltage full- wave rectifier (up to 100 V AC input), high-voltage series regulators (24/5 V outputs) and a linear regulator (1.8/ 3.3 V output) with bandgap voltage reference. With the high voltage output of the series regulator, the proposed neurostimulator could deliver a considerably large current in high electrode-tissue contact impedance. This neu- rostimulator has been fabricated in a CSMC 1 μm 5/40/700 V BCD'process and the total silicon area including pads is 5.8 mm2. Preliminary tests are successful as the neurostimulator shows good stability under a 13.56 MHz AC supply. Compared to previously reported works, our design has advantages of a wide induced voltage range (26-100 V), high output voltage (up to 24 V) and high-level integration, which are suitable for implantable neu- rostimulators.展开更多
基金Project supported by the National Natural Science Foundation of China(Nos.61076023,61178051)the National Basic Research Program of China(No.2011CB933203)the High-Tech-Program of China(No.2012AA030308)
文摘This paper present a highly-integrated neurostimulator with an on-chip inductive power-recovery fron- tend and high-voltage stimulus generator. In particular, the power-recovery frontend includes a high-voltage full- wave rectifier (up to 100 V AC input), high-voltage series regulators (24/5 V outputs) and a linear regulator (1.8/ 3.3 V output) with bandgap voltage reference. With the high voltage output of the series regulator, the proposed neurostimulator could deliver a considerably large current in high electrode-tissue contact impedance. This neu- rostimulator has been fabricated in a CSMC 1 μm 5/40/700 V BCD'process and the total silicon area including pads is 5.8 mm2. Preliminary tests are successful as the neurostimulator shows good stability under a 13.56 MHz AC supply. Compared to previously reported works, our design has advantages of a wide induced voltage range (26-100 V), high output voltage (up to 24 V) and high-level integration, which are suitable for implantable neu- rostimulators.