In this paper,a new algorithm relaxation-strategy-based modification branchand-bound algorithm is developed for a type of solving the minimum cost transportationproduction problem with concave production costs.The maj...In this paper,a new algorithm relaxation-strategy-based modification branchand-bound algorithm is developed for a type of solving the minimum cost transportationproduction problem with concave production costs.The major improvement of the proposed new method is that modification algorithm reinforces the bounding operation using a Lagrangian relaxation,which is a concave minimization but obtains a tighter bound than the usual linear programming relaxation.Some computational results are included.Computation results indicate that the algorithm can solve fairly large scale problems.展开更多
In this paper, a branch-and-bound method for solving multi-dimensional quadratic 0-1 knapsack problems was studied. The method was based on the Lagrangian relaxation and the surrogate constraint technique for finding ...In this paper, a branch-and-bound method for solving multi-dimensional quadratic 0-1 knapsack problems was studied. The method was based on the Lagrangian relaxation and the surrogate constraint technique for finding feasible solutions. The Lagrangian relaxations were solved with the maximum-flow algorithm and the Lagrangian bounds was determined with the outer approximation method. Computational results show the efficiency of the proposed method for multi-dimensional quadratic 0-1 knapsack problems.展开更多
In this paper, a new branch-and-bound algorithm based on the Lagrangian dual relaxation and continuous relaxation is proposed for discrete multi-factor portfolio selection model with roundlot restriction in financial ...In this paper, a new branch-and-bound algorithm based on the Lagrangian dual relaxation and continuous relaxation is proposed for discrete multi-factor portfolio selection model with roundlot restriction in financial optimization. This discrete portfolio model is of integer quadratic programming problems. The separable structure of the model is investigated by using Lagrangian relaxation and dual search. Computational results show that the algorithm is capable of solving real-world portfolio problems with data from US stock market and randomly generated test problems with up to 120 securities.展开更多
A discrete differential evolution algorithm combined with the branch and bound method is developed to solve the integer linear bilevel programming problems, in which both upper level and lower level variables are forc...A discrete differential evolution algorithm combined with the branch and bound method is developed to solve the integer linear bilevel programming problems, in which both upper level and lower level variables are forced to be integer. An integer coding for upper level variables is adopted, and then a discrete differential evolution algorithm with an improved feasibility-based comparison is developed to directly explore the integer solution at the upper level. For a given upper level integer variable, the lower level integer programming problem is solved by the existing branch and bound algorithm to obtain the optimal integer solution at the lower level. In the same framework of the algorithm, two other constraint handling methods, i.e. the penalty function method and the feasibility-based comparison method are also tested. The experimental results demonstrate that the discrete differential evolution algorithm with different constraint handling methods is effective in finding the global optimal integer solutions, but the improved constraint handling method performs better than two compared constraint handling methods.展开更多
基金Foundation item: Supported by the National Natural Science Foundation of China(10726016) Supported by the Hubei Province Natural Science Foundation Project(T200809 D200613002)
文摘In this paper,a new algorithm relaxation-strategy-based modification branchand-bound algorithm is developed for a type of solving the minimum cost transportationproduction problem with concave production costs.The major improvement of the proposed new method is that modification algorithm reinforces the bounding operation using a Lagrangian relaxation,which is a concave minimization but obtains a tighter bound than the usual linear programming relaxation.Some computational results are included.Computation results indicate that the algorithm can solve fairly large scale problems.
基金Project supported by the National Natural Science Foundation of China (Grant No.10571116)
文摘In this paper, a branch-and-bound method for solving multi-dimensional quadratic 0-1 knapsack problems was studied. The method was based on the Lagrangian relaxation and the surrogate constraint technique for finding feasible solutions. The Lagrangian relaxations were solved with the maximum-flow algorithm and the Lagrangian bounds was determined with the outer approximation method. Computational results show the efficiency of the proposed method for multi-dimensional quadratic 0-1 knapsack problems.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.70518001. 70671064)
文摘In this paper, a new branch-and-bound algorithm based on the Lagrangian dual relaxation and continuous relaxation is proposed for discrete multi-factor portfolio selection model with roundlot restriction in financial optimization. This discrete portfolio model is of integer quadratic programming problems. The separable structure of the model is investigated by using Lagrangian relaxation and dual search. Computational results show that the algorithm is capable of solving real-world portfolio problems with data from US stock market and randomly generated test problems with up to 120 securities.
基金supported by the Natural Science Basic Research Plan in Shaanxi Province of China(2013JM1022)the Fundamental Research Funds for the Central Universities(K50511700004)
文摘A discrete differential evolution algorithm combined with the branch and bound method is developed to solve the integer linear bilevel programming problems, in which both upper level and lower level variables are forced to be integer. An integer coding for upper level variables is adopted, and then a discrete differential evolution algorithm with an improved feasibility-based comparison is developed to directly explore the integer solution at the upper level. For a given upper level integer variable, the lower level integer programming problem is solved by the existing branch and bound algorithm to obtain the optimal integer solution at the lower level. In the same framework of the algorithm, two other constraint handling methods, i.e. the penalty function method and the feasibility-based comparison method are also tested. The experimental results demonstrate that the discrete differential evolution algorithm with different constraint handling methods is effective in finding the global optimal integer solutions, but the improved constraint handling method performs better than two compared constraint handling methods.