This paper is devoted to the study of the linearization problem of system of three second-order ordinary differential equations and . The necessary conditions for linearization by general point transformation and are ...This paper is devoted to the study of the linearization problem of system of three second-order ordinary differential equations and . The necessary conditions for linearization by general point transformation and are found. The sufficient conditions for linearization by restricted class of point transformation and are obtained. Moreover, the procedure for obtaining the linearizing transformation is provided in explicit forms. Examples demonstrating the procedure of using the linearization theorems are presented.展开更多
In this paper, combining the idea of difference method and finite element method, we construct a difference scheme for a self-adjoint problem in conservation form. Its solution uniformly converges to that of the origi...In this paper, combining the idea of difference method and finite element method, we construct a difference scheme for a self-adjoint problem in conservation form. Its solution uniformly converges to that of the original differential equation problem with order h3.展开更多
The main purpose of this article is to study the existence theories of global meromorphic solutions for some second-order linear differential equations with meromorphic coefficients, which perfect the solution theory ...The main purpose of this article is to study the existence theories of global meromorphic solutions for some second-order linear differential equations with meromorphic coefficients, which perfect the solution theory of such equations.展开更多
In this paper, we approach the problem of obtaining approximate solution of second-order initial value problems by converting it to an optimization problem. It is assumed that the solution can be approximated by a pol...In this paper, we approach the problem of obtaining approximate solution of second-order initial value problems by converting it to an optimization problem. It is assumed that the solution can be approximated by a polynomial. The coefficients of the polynomial are then optimized using simulated annealing technique. Numerical examples with good results show the accuracy of the proposed approach compared with some existing methods.展开更多
In this paper, we construct a uniform second-order difference scheme for a class of boundary value problems of fourth-order ordinary differential equations. Finally, a numerical example is given.
In this paper, the principle techinique of the differentiator method, and some examples using the method to obtain the general solution and special solution of the differential equation are introduced. The essential d...In this paper, the principle techinique of the differentiator method, and some examples using the method to obtain the general solution and special solution of the differential equation are introduced. The essential difference between this method and the others is that by this method special and general solutions can be obtained directly with the operations of the differentor in the differential equation and without the enlightenment of other scientific knowledge.展开更多
In this paper, we prove existence and multiplicities of solutions for asymptotically linear ordinary differential equations satisfying Sturm-Liouville boundary value conditions with resonance. Adding assumption H3 tha...In this paper, we prove existence and multiplicities of solutions for asymptotically linear ordinary differential equations satisfying Sturm-Liouville boundary value conditions with resonance. Adding assumption H3 that is similar to (LL) in Theorem 1.1, by index theory and Morse theory, we obtain more nontrivial solutions.展开更多
Numerical algorithms for stiff stochastic differential equations are developed using lin-ear approximations of the fast diffusion processes,under the assumption of decoupling between fast and slow processes.Three nume...Numerical algorithms for stiff stochastic differential equations are developed using lin-ear approximations of the fast diffusion processes,under the assumption of decoupling between fast and slow processes.Three numerical schemes are proposed,all of which are based on the linearized formulation albeit with different degrees of approximation.The schemes are of comparable complexity to the classical explicit Euler-Maruyama scheme but can achieve better accuracy at larger time steps in stiff systems.Convergence analysis is conducted for one of the schemes,that shows it to have a strong convergence order of 1/2 and a weak convergence order of 1.Approximations arriving at the other two schemes are discussed.Numerical experiments are carried out to examine the convergence of the schemes proposed on model problems.展开更多
This paper deals with the singular perturbation of the boundary value problem of the systems for quasi-linear ordinary differential equationswhere x,f, y , h, A, B and C all belong to Rn , and g is an n×n matrix ...This paper deals with the singular perturbation of the boundary value problem of the systems for quasi-linear ordinary differential equationswhere x,f, y , h, A, B and C all belong to Rn , and g is an n×n matrix function. Under suitable conditions we prove the existence of the solutions by diagonalization and the fixed point theorem and also estimate the remainder.展开更多
In this paper, we give some sufficient conditions of the instability for the fourth order linear differential equation with varied coefficient, at least one of the characteristic roots of which has positive real part,...In this paper, we give some sufficient conditions of the instability for the fourth order linear differential equation with varied coefficient, at least one of the characteristic roots of which has positive real part, by means of Liapunov's second method.展开更多
The Emden differential equation is one of the most widely studied and challenging nonlinear dynamics equations in literature. It finds applications in various areas of study such as celestial mechanics, fluid mechanic...The Emden differential equation is one of the most widely studied and challenging nonlinear dynamics equations in literature. It finds applications in various areas of study such as celestial mechanics, fluid mechanics, Steller structure, isothermal gas spheres, thermionic currents and so on. Because of the importance of the equation, the method of generalized Sundman transformation (GST) as proposed by Nakpim and Meleshko is used for linearizing the Emden differential equation. The Emden differential equation considered here is a modification of the equation given by Berkovic. The results obtained in this paper imply that the Emden equation cannot be linearized by a point transformation. The general solution of the modified Emden equation is also obtained.展开更多
In this paper,by using trapezoidal rule and the integration-by-parts formula of Malliavin calculus,we propose three new numerical schemes for solving decoupled forward-backward stochastic differential equations.We the...In this paper,by using trapezoidal rule and the integration-by-parts formula of Malliavin calculus,we propose three new numerical schemes for solving decoupled forward-backward stochastic differential equations.We theoretically prove that the schemes have second-order convergence rate.To demonstrate the effectiveness and the second-order convergence rate,numerical tests are given.展开更多
In this paper, tile authors first study two kinds of stochastic differential equations (SDEs) with Levy processes as noise source. Based on the existence and uniqueness of the solutions of these SDEs and multi-dimen...In this paper, tile authors first study two kinds of stochastic differential equations (SDEs) with Levy processes as noise source. Based on the existence and uniqueness of the solutions of these SDEs and multi-dimensional backward stochastic differential equations (BSDEs) driven by Levy pro- cesses, the authors proceed to study a stochastic linear quadratic (LQ) optimal control problem with a Levy process, where the cost weighting matrices of the state and control are allowed to be indefinite. One kind of new stochastic Riccati equation that involves equality and inequality constraints is derived from the idea of square completion and its solvability is proved to be sufficient for the well-posedness and the existence of optimal control which can be of either state feedback or open-loop form of the LQ problems. Moreover, the authors obtain the existence and uniqueness of the solution to the Riccati equation for some special cases. Finally, two examples are presented to illustrate these theoretical results.展开更多
This paper studies the well-posedness of fully coupled linear forward-backward stochastic differential equations (FBSDEs). The authors introduce two main methods-the method of continuation under monotonicity condition...This paper studies the well-posedness of fully coupled linear forward-backward stochastic differential equations (FBSDEs). The authors introduce two main methods-the method of continuation under monotonicity conditions and the unified approach-to ensure the existence and uniqueness of solutions of fully coupled linear FBSDEs. The authors show that the first method (the method of continuation under monotonicity conditions) can be deduced as a special case of the second method (the unified approach). An example is given to illustrate it in linear FBSDEs case. And then, a linear transformation method in virtue of the non-degeneracy of transformation matrix is introduced for cases that the linear FBSDEs can not be dealt with by the the method of continuation under monotonicity conditions and the unified approach directly. As a powerful supplement to the the method of continuation under monotonicity conditions and the unified approach, linear transformation method overall develops the well-posedness theory of fully coupled linear forward-backward stochastic differential equations which have potential applications in optimal control and partial differential equation theory.展开更多
An iterative process of positive solution for BVP w'+h(t)f(w)=0, w(0)=w(1)= 0 is established, where h(t) is allowed to changes sign on [0,1]. The process starts from a simple function.
In this paper, in the sense of the definition of almost periodicity given by H.Bohr using fixed-point principle, we investigate the existence and uniqueness of quadratic mean almost periodic solutions to semi-linear s...In this paper, in the sense of the definition of almost periodicity given by H.Bohr using fixed-point principle, we investigate the existence and uniqueness of quadratic mean almost periodic solutions to semi-linear stochastic integro-differential evolution equations associated with abstract Volterra equations. Some examples are also given to illustrate our theory.展开更多
Nonlinear stochasticmodelling plays an important character in the different fields of sciences such as environmental,material,engineering,chemistry,physics,biomedical engineering,and many more.In the current study,we ...Nonlinear stochasticmodelling plays an important character in the different fields of sciences such as environmental,material,engineering,chemistry,physics,biomedical engineering,and many more.In the current study,we studied the computational dynamics of the stochastic dengue model with the real material of the model.Positivity,boundedness,and dynamical consistency are essential features of stochastic modelling.Our focus is to design the computational method which preserves essential features of the model.The stochastic non-standard finite difference technique is most efficient as compared to other techniques used in literature.Analysis and comparison were explored in favour of convergence.Also,we address the comparison between the stochastic and deterministic models.展开更多
Nonlinear stochastic modeling plays a significant role in disciplines such as psychology,finance,physical sciences,engineering,econometrics,and biological sciences.Dynamical consistency,positivity,and boundedness are ...Nonlinear stochastic modeling plays a significant role in disciplines such as psychology,finance,physical sciences,engineering,econometrics,and biological sciences.Dynamical consistency,positivity,and boundedness are fundamental properties of stochastic modeling.A stochastic coronavirus model is studied with techniques of transition probabilities and parametric perturbation.Well-known explicit methods such as Euler Maruyama,stochastic Euler,and stochastic Runge–Kutta are investigated for the stochastic model.Regrettably,the above essential properties are not restored by existing methods.Hence,there is a need to construct essential properties preserving the computational method.The non-standard approach of finite difference is examined to maintain the above basic features of the stochastic model.The comparison of the results of deterministic and stochastic models is also presented.Our proposed efficient computational method well preserves the essential properties of the model.Comparison and convergence analyses of the method are presented.展开更多
A new class of generalized backward doubly stochastic differential equations (GBDSDEs in short) driven by Teugels martingales associated with Levy process are investigated. We establish a comparison theorem which al...A new class of generalized backward doubly stochastic differential equations (GBDSDEs in short) driven by Teugels martingales associated with Levy process are investigated. We establish a comparison theorem which allows us to derive an existence result of solutions under continuous and linear growth conditions.展开更多
文摘This paper is devoted to the study of the linearization problem of system of three second-order ordinary differential equations and . The necessary conditions for linearization by general point transformation and are found. The sufficient conditions for linearization by restricted class of point transformation and are obtained. Moreover, the procedure for obtaining the linearizing transformation is provided in explicit forms. Examples demonstrating the procedure of using the linearization theorems are presented.
文摘In this paper, combining the idea of difference method and finite element method, we construct a difference scheme for a self-adjoint problem in conservation form. Its solution uniformly converges to that of the original differential equation problem with order h3.
基金Supported by the National Natural Science Foundation of China(11101096 )Guangdong Natural Science Foundation (S2012010010376, S201204006711)
文摘The main purpose of this article is to study the existence theories of global meromorphic solutions for some second-order linear differential equations with meromorphic coefficients, which perfect the solution theory of such equations.
文摘In this paper, we approach the problem of obtaining approximate solution of second-order initial value problems by converting it to an optimization problem. It is assumed that the solution can be approximated by a polynomial. The coefficients of the polynomial are then optimized using simulated annealing technique. Numerical examples with good results show the accuracy of the proposed approach compared with some existing methods.
文摘In this paper, we construct a uniform second-order difference scheme for a class of boundary value problems of fourth-order ordinary differential equations. Finally, a numerical example is given.
文摘In this paper, the principle techinique of the differentiator method, and some examples using the method to obtain the general solution and special solution of the differential equation are introduced. The essential difference between this method and the others is that by this method special and general solutions can be obtained directly with the operations of the differentor in the differential equation and without the enlightenment of other scientific knowledge.
文摘In this paper, we prove existence and multiplicities of solutions for asymptotically linear ordinary differential equations satisfying Sturm-Liouville boundary value conditions with resonance. Adding assumption H3 that is similar to (LL) in Theorem 1.1, by index theory and Morse theory, we obtain more nontrivial solutions.
文摘Numerical algorithms for stiff stochastic differential equations are developed using lin-ear approximations of the fast diffusion processes,under the assumption of decoupling between fast and slow processes.Three numerical schemes are proposed,all of which are based on the linearized formulation albeit with different degrees of approximation.The schemes are of comparable complexity to the classical explicit Euler-Maruyama scheme but can achieve better accuracy at larger time steps in stiff systems.Convergence analysis is conducted for one of the schemes,that shows it to have a strong convergence order of 1/2 and a weak convergence order of 1.Approximations arriving at the other two schemes are discussed.Numerical experiments are carried out to examine the convergence of the schemes proposed on model problems.
文摘This paper deals with the singular perturbation of the boundary value problem of the systems for quasi-linear ordinary differential equationswhere x,f, y , h, A, B and C all belong to Rn , and g is an n×n matrix function. Under suitable conditions we prove the existence of the solutions by diagonalization and the fixed point theorem and also estimate the remainder.
基金Provincial Science and Technology Foundation of Guizhou
文摘In this paper, we give some sufficient conditions of the instability for the fourth order linear differential equation with varied coefficient, at least one of the characteristic roots of which has positive real part, by means of Liapunov's second method.
文摘The Emden differential equation is one of the most widely studied and challenging nonlinear dynamics equations in literature. It finds applications in various areas of study such as celestial mechanics, fluid mechanics, Steller structure, isothermal gas spheres, thermionic currents and so on. Because of the importance of the equation, the method of generalized Sundman transformation (GST) as proposed by Nakpim and Meleshko is used for linearizing the Emden differential equation. The Emden differential equation considered here is a modification of the equation given by Berkovic. The results obtained in this paper imply that the Emden equation cannot be linearized by a point transformation. The general solution of the modified Emden equation is also obtained.
基金supported by National Natural Science Foundation of China (Grant Nos. 91130003 and 11171189)Natural Science Foundation of Shandong Province (Grant No. ZR2011AZ002)
文摘In this paper,by using trapezoidal rule and the integration-by-parts formula of Malliavin calculus,we propose three new numerical schemes for solving decoupled forward-backward stochastic differential equations.We theoretically prove that the schemes have second-order convergence rate.To demonstrate the effectiveness and the second-order convergence rate,numerical tests are given.
基金Supported by National Basic Research Program of China (973 Program) (2007CB814904), National Natural Science Foundation of China (10671112, 10701050), and Natural Science Foundation of Shandong Province (Z2006A01)
基金This work was supported by the National Basic Research Program of China (973 Program) under Grant No. 2007CB814904the Natural Science Foundation of China under Grant No. 10671112+1 种基金Shandong Province under Grant No. Z2006A01Research Fund for the Doctoral Program of Higher Education of China under Grant No. 20060422018
文摘In this paper, tile authors first study two kinds of stochastic differential equations (SDEs) with Levy processes as noise source. Based on the existence and uniqueness of the solutions of these SDEs and multi-dimensional backward stochastic differential equations (BSDEs) driven by Levy pro- cesses, the authors proceed to study a stochastic linear quadratic (LQ) optimal control problem with a Levy process, where the cost weighting matrices of the state and control are allowed to be indefinite. One kind of new stochastic Riccati equation that involves equality and inequality constraints is derived from the idea of square completion and its solvability is proved to be sufficient for the well-posedness and the existence of optimal control which can be of either state feedback or open-loop form of the LQ problems. Moreover, the authors obtain the existence and uniqueness of the solution to the Riccati equation for some special cases. Finally, two examples are presented to illustrate these theoretical results.
基金supported by the National Natural Science Foundation of China under Grant No.61573217the National High-Level Personnel of Special Support Programthe Chang Jiang Scholar Program of Chinese Education Ministry
文摘This paper studies the well-posedness of fully coupled linear forward-backward stochastic differential equations (FBSDEs). The authors introduce two main methods-the method of continuation under monotonicity conditions and the unified approach-to ensure the existence and uniqueness of solutions of fully coupled linear FBSDEs. The authors show that the first method (the method of continuation under monotonicity conditions) can be deduced as a special case of the second method (the unified approach). An example is given to illustrate it in linear FBSDEs case. And then, a linear transformation method in virtue of the non-degeneracy of transformation matrix is introduced for cases that the linear FBSDEs can not be dealt with by the the method of continuation under monotonicity conditions and the unified approach directly. As a powerful supplement to the the method of continuation under monotonicity conditions and the unified approach, linear transformation method overall develops the well-posedness theory of fully coupled linear forward-backward stochastic differential equations which have potential applications in optimal control and partial differential equation theory.
文摘An iterative process of positive solution for BVP w'+h(t)f(w)=0, w(0)=w(1)= 0 is established, where h(t) is allowed to changes sign on [0,1]. The process starts from a simple function.
文摘In this paper, in the sense of the definition of almost periodicity given by H.Bohr using fixed-point principle, we investigate the existence and uniqueness of quadratic mean almost periodic solutions to semi-linear stochastic integro-differential evolution equations associated with abstract Volterra equations. Some examples are also given to illustrate our theory.
基金funded by the Research and initiative centre RGDES2017-01-17,Prince Sultan University.
文摘Nonlinear stochasticmodelling plays an important character in the different fields of sciences such as environmental,material,engineering,chemistry,physics,biomedical engineering,and many more.In the current study,we studied the computational dynamics of the stochastic dengue model with the real material of the model.Positivity,boundedness,and dynamical consistency are essential features of stochastic modelling.Our focus is to design the computational method which preserves essential features of the model.The stochastic non-standard finite difference technique is most efficient as compared to other techniques used in literature.Analysis and comparison were explored in favour of convergence.Also,we address the comparison between the stochastic and deterministic models.
基金the Research and initiative center COVID-19-DES-2020-65,Prince Sultan University.
文摘Nonlinear stochastic modeling plays a significant role in disciplines such as psychology,finance,physical sciences,engineering,econometrics,and biological sciences.Dynamical consistency,positivity,and boundedness are fundamental properties of stochastic modeling.A stochastic coronavirus model is studied with techniques of transition probabilities and parametric perturbation.Well-known explicit methods such as Euler Maruyama,stochastic Euler,and stochastic Runge–Kutta are investigated for the stochastic model.Regrettably,the above essential properties are not restored by existing methods.Hence,there is a need to construct essential properties preserving the computational method.The non-standard approach of finite difference is examined to maintain the above basic features of the stochastic model.The comparison of the results of deterministic and stochastic models is also presented.Our proposed efficient computational method well preserves the essential properties of the model.Comparison and convergence analyses of the method are presented.
基金supported by TWAS Research Grants to individuals (No. 09-100 RG/MATHS/AF/AC-IUNESCO FR: 3240230311)
文摘A new class of generalized backward doubly stochastic differential equations (GBDSDEs in short) driven by Teugels martingales associated with Levy process are investigated. We establish a comparison theorem which allows us to derive an existence result of solutions under continuous and linear growth conditions.