The definitions of controllability, observability and stability were presented for fractional-order linear systems. Using the Cayley-Hamilton theorem and Mittag-Leffler function in two parameters, the sufficient and n...The definitions of controllability, observability and stability were presented for fractional-order linear systems. Using the Cayley-Hamilton theorem and Mittag-Leffler function in two parameters, the sufficient and necessary conditions of controllability and observability for such systems were derived. In terms of Lyapunov’s stability theory, using the theorems of Mittage-Leffler function in two parameters this paper directly derived the sufficient and necessary condition of stability for such systems. The results obtained are useful for the analysis and synthesis of fractional-order linear control systems.展开更多
An efficient identification algorithm is given for commensurate order linear time-invariant fractional systems. This algorithm can identify not only model coefficients of the system, but also its differential order at...An efficient identification algorithm is given for commensurate order linear time-invariant fractional systems. This algorithm can identify not only model coefficients of the system, but also its differential order at the same time. The basic idea is to change the system matrix into a diagonal one through basis transformation. This makes it possible to turn the system’s input-output relationships into the summation of several simple subsystems, and after the identification of these subsystems, the whole identification system is obtained which is algebraically equivalent to the former system. Finally an identification example verifies the effectiveness of the method previously mentioned.展开更多
In traditional system identification (SI), actual values of system parameters are concealed in the input and output data;hence, it is necessary to apply estimation methods to determine the parameters. In signal proces...In traditional system identification (SI), actual values of system parameters are concealed in the input and output data;hence, it is necessary to apply estimation methods to determine the parameters. In signal processing, a signal with N elements must be sampled at least N times. Thus, most SI methods use N or more sample data to identify a model with N parameters;however, this can be improved by a new sampling theory called compressive sensing (CS). Based on CS, an SI method called compressive measurement identification (CMI) is proposed for reducing the data needed for estimation, by measuring the parameters using a series of linear measurements, rather than the measurements in sequence. In addition, the accuracy of the measurement process is guaranteed by a criterion called the restrict isometric principle. Simulations demonstrate the accuracy and robustness of CMI in an underdetermined case. Further, the dynamic process of a DC motor is identified experimentally, establishing that CMI can shorten the identification process and increase the prediction accuracy.展开更多
This paper proposes a new approach for multi-objective robust control. The approach extends the standard generalized l2 (Gl2) and generalized H2 (GH2) conditions to a set of new linear matrix inequality (LMI) constra...This paper proposes a new approach for multi-objective robust control. The approach extends the standard generalized l2 (Gl2) and generalized H2 (GH2) conditions to a set of new linear matrix inequality (LMI) constraints based on a new stability condition. A technique for variable parameterization is introduced to the multi-objective control problem to preserve the linearity of the synthesis variables. Consequently, the multi-channel multi-objective mixed Gl2/GH2 control problem can be solved less conservatively using computationally tractable algorithms developed in the paper.展开更多
Designing a robust controller for a system with timevarying delays poses a major challenge. In this paper, we propose a method based on mixed sensitivity H∞ for the control of linear time invariant(LTI) systems wit...Designing a robust controller for a system with timevarying delays poses a major challenge. In this paper, we propose a method based on mixed sensitivity H∞ for the control of linear time invariant(LTI) systems with varying time delays. The time delay is assumed bounded and the upper bound is known. In the technique we propose, the delay affecting the plant to be controlled is treated as an unmodeled uncertainty(in form of multiplicative uncertainty). That uncertainty is approximated and then an H∞based controller, for the plant represented by the multiplicative uncertainty and the nominal model, is calculated. The obtained H∞controller is used to control the LTI systems with varying time delays. Simulation examples are given to illustrate the effectiveness of the proposed method.展开更多
In this paper, a model-free approach is presented to design an observer-based fault detection system of linear continuoustime systems based on input and output data in the time domain. The core of the approach is to d...In this paper, a model-free approach is presented to design an observer-based fault detection system of linear continuoustime systems based on input and output data in the time domain. The core of the approach is to directly identify parameters of the observer-based residual generator based on a numerically reliable data equation obtained by filtering and sampling the input and output signals.展开更多
This paper is focused on formability of multi-agent systems (MASs). The problem is concerned with the existence of a protocol that has the ability to drive the MAS involved to the desired formation, and thus, is of ...This paper is focused on formability of multi-agent systems (MASs). The problem is concerned with the existence of a protocol that has the ability to drive the MAS involved to the desired formation, and thus, is of essential importance in designing formation protocols. Formability of an MAS depends on several key factors: agents' dynamic structures, connectivity topology, properties of the desired formation and the admissible control set. Agents of the MASs considered here are described by a general continuous linear time-invariant (LTI) model. By using the matrix analysis and algebraic graph theory, some necessary and sufficient conditions on formability of LTI-MASs are obtained. These conditions characterize in some sense the relationship of formability, connectivity topology, formation properties and agent dynamics with respect to some typical and widely used admissible protocol sets.展开更多
This paper attempts to set a unified scene for various linear time-invariant (LTI) control system design schemes, by transforming the existing concept of “computer-aided control system design” (CACSD) to novel “com...This paper attempts to set a unified scene for various linear time-invariant (LTI) control system design schemes, by transforming the existing concept of “computer-aided control system design” (CACSD) to novel “computer-automated control system design” (CAutoCSD). The first step towards this goal is to accommodate, under practical constraints, various design objectives that are desirable in both time and frequency domains. Such performance-prioritised unification is aimed at relieving practising engineers from having to select a particular control scheme and from sacrificing certain performance goals resulting from pre-commitment to such schemes. With recent progress in evolutionary computing based extra-numeric, multi-criterion search and optimisation techniques, such unification of LTI control schemes becomes feasible, analytical and practical, and the resultant designs can be creative. The techniques developed are applied to, and illustrated by, three design problems. The unified approach automatically provides an integrator for zero-steady state error in velocity control of a DC motor, and meets multiple objectives in the design of an LTI controller for a non-minimum phase plant and offers a high-performance LTI controller network for a non-linear chemical process.展开更多
This paper is concerned with the parameter estimation of deterministic autoregressive moving average(DARMA)systems with quantization data.The estimation algorithms adopted here are the least squares(LS)and the forgett...This paper is concerned with the parameter estimation of deterministic autoregressive moving average(DARMA)systems with quantization data.The estimation algorithms adopted here are the least squares(LS)and the forgetting factor LS,and the signal quantizer is of uniform,that is,with uniform quantization error.The authors analyse the properties of the LS and the forgetting factor LS,and establish the boundedness of the estimation errors and a relationship of the estimation errors with the size of quantization error,which implies that the smaller the quantization error is,the smaller the estimation error is.A numerical example is given to demonstrate theorems.展开更多
ASIC or FPGA implementation of a finite word-length PID controller requires a double expertise: in control system and hardware design. In this paper, we only focus on the hardware side of the problem. We show how to ...ASIC or FPGA implementation of a finite word-length PID controller requires a double expertise: in control system and hardware design. In this paper, we only focus on the hardware side of the problem. We show how to design configurable fixed-point PIDs to satisfy applications requiring minimal power consumption, or high control-rate, or both together. As multiply operation is the engine of PID, we experienced three algorithms: Booth, modified Booth, and a new recursive multi-bit multiplication algorithm. This later enables the construction of finely grained PID structures with bit-level and unit-time precision. Such a feature permits to tailor the PID to the desired performance and power budget. All PIDs are implemented at register-transfer4evel (RTL) level as technology-independent reusable IP-cores. They are reconfigurable according to two compilemtime constants: set-point word-length and latency. To make PID design easily reproducible, all necessary implementation details are provided and discussed.展开更多
基金Shanghai Science and Technology Devel-opm ent Funds ( No.0 1160 70 3 3)
文摘The definitions of controllability, observability and stability were presented for fractional-order linear systems. Using the Cayley-Hamilton theorem and Mittag-Leffler function in two parameters, the sufficient and necessary conditions of controllability and observability for such systems were derived. In terms of Lyapunov’s stability theory, using the theorems of Mittage-Leffler function in two parameters this paper directly derived the sufficient and necessary condition of stability for such systems. The results obtained are useful for the analysis and synthesis of fractional-order linear control systems.
基金Sponsored by 863 Project (Grant No.2002AA517020) Developing Fund of Shanghai Science Committee (Grant No.011607033).
文摘An efficient identification algorithm is given for commensurate order linear time-invariant fractional systems. This algorithm can identify not only model coefficients of the system, but also its differential order at the same time. The basic idea is to change the system matrix into a diagonal one through basis transformation. This makes it possible to turn the system’s input-output relationships into the summation of several simple subsystems, and after the identification of these subsystems, the whole identification system is obtained which is algebraically equivalent to the former system. Finally an identification example verifies the effectiveness of the method previously mentioned.
基金Supported by the National Natural Science Foundation of China(61605218)National Defense Science and Technology Innovation Foundation of Chinese Academy of Sciences(CXJJ-17S023)
文摘In traditional system identification (SI), actual values of system parameters are concealed in the input and output data;hence, it is necessary to apply estimation methods to determine the parameters. In signal processing, a signal with N elements must be sampled at least N times. Thus, most SI methods use N or more sample data to identify a model with N parameters;however, this can be improved by a new sampling theory called compressive sensing (CS). Based on CS, an SI method called compressive measurement identification (CMI) is proposed for reducing the data needed for estimation, by measuring the parameters using a series of linear measurements, rather than the measurements in sequence. In addition, the accuracy of the measurement process is guaranteed by a criterion called the restrict isometric principle. Simulations demonstrate the accuracy and robustness of CMI in an underdetermined case. Further, the dynamic process of a DC motor is identified experimentally, establishing that CMI can shorten the identification process and increase the prediction accuracy.
基金Project supported by the National Natural Science Foundation ofChina (No. 60374028) and the Scientific Research Foundation forReturned Overseas Chinese Scholars Ministry of Education (No.[2004]176)
文摘This paper proposes a new approach for multi-objective robust control. The approach extends the standard generalized l2 (Gl2) and generalized H2 (GH2) conditions to a set of new linear matrix inequality (LMI) constraints based on a new stability condition. A technique for variable parameterization is introduced to the multi-objective control problem to preserve the linearity of the synthesis variables. Consequently, the multi-channel multi-objective mixed Gl2/GH2 control problem can be solved less conservatively using computationally tractable algorithms developed in the paper.
文摘Designing a robust controller for a system with timevarying delays poses a major challenge. In this paper, we propose a method based on mixed sensitivity H∞ for the control of linear time invariant(LTI) systems with varying time delays. The time delay is assumed bounded and the upper bound is known. In the technique we propose, the delay affecting the plant to be controlled is treated as an unmodeled uncertainty(in form of multiplicative uncertainty). That uncertainty is approximated and then an H∞based controller, for the plant represented by the multiplicative uncertainty and the nominal model, is calculated. The obtained H∞controller is used to control the LTI systems with varying time delays. Simulation examples are given to illustrate the effectiveness of the proposed method.
基金supported by the National Natural Science Foundation of China(61573332,61601431)Fundamental Research Funds for the Central Universities(WK2100100028)
基金This work was supported was supported in part by the European Union under grant NeCST.
文摘In this paper, a model-free approach is presented to design an observer-based fault detection system of linear continuoustime systems based on input and output data in the time domain. The core of the approach is to directly identify parameters of the observer-based residual generator based on a numerically reliable data equation obtained by filtering and sampling the input and output signals.
基金supported by the National Nature Science Foundation of China under Grants Nos.60934006 and 61104136the Shandong Provincial Natural Science Foundation under Grant No.ZR2010FQ002+1 种基金the School Foundation of Qufu Normal University under Grant No.XJ200913the Scientific Research Foundation of Qufu Normal University
文摘This paper is focused on formability of multi-agent systems (MASs). The problem is concerned with the existence of a protocol that has the ability to drive the MAS involved to the desired formation, and thus, is of essential importance in designing formation protocols. Formability of an MAS depends on several key factors: agents' dynamic structures, connectivity topology, properties of the desired formation and the admissible control set. Agents of the MASs considered here are described by a general continuous linear time-invariant (LTI) model. By using the matrix analysis and algebraic graph theory, some necessary and sufficient conditions on formability of LTI-MASs are obtained. These conditions characterize in some sense the relationship of formability, connectivity topology, formation properties and agent dynamics with respect to some typical and widely used admissible protocol sets.
文摘This paper attempts to set a unified scene for various linear time-invariant (LTI) control system design schemes, by transforming the existing concept of “computer-aided control system design” (CACSD) to novel “computer-automated control system design” (CAutoCSD). The first step towards this goal is to accommodate, under practical constraints, various design objectives that are desirable in both time and frequency domains. Such performance-prioritised unification is aimed at relieving practising engineers from having to select a particular control scheme and from sacrificing certain performance goals resulting from pre-commitment to such schemes. With recent progress in evolutionary computing based extra-numeric, multi-criterion search and optimisation techniques, such unification of LTI control schemes becomes feasible, analytical and practical, and the resultant designs can be creative. The techniques developed are applied to, and illustrated by, three design problems. The unified approach automatically provides an integrator for zero-steady state error in velocity control of a DC motor, and meets multiple objectives in the design of an LTI controller for a non-minimum phase plant and offers a high-performance LTI controller network for a non-linear chemical process.
基金supported by the National Natural Science Foundation of China(11171113)the ECNU Reward for Excellent Doctoral Students in Academics(xrzz2014019)+1 种基金the Science and Technology Commission of Shanghai Municipality(13dz2260400)the Shanghai Key Laboratory of PMMP
基金supported by National Key R&D Program of China under Grant No.2018YFA0703800the National Natural Science Foundation of China under Grant No.61877057。
文摘This paper is concerned with the parameter estimation of deterministic autoregressive moving average(DARMA)systems with quantization data.The estimation algorithms adopted here are the least squares(LS)and the forgetting factor LS,and the signal quantizer is of uniform,that is,with uniform quantization error.The authors analyse the properties of the LS and the forgetting factor LS,and establish the boundedness of the estimation errors and a relationship of the estimation errors with the size of quantization error,which implies that the smaller the quantization error is,the smaller the estimation error is.A numerical example is given to demonstrate theorems.
文摘ASIC or FPGA implementation of a finite word-length PID controller requires a double expertise: in control system and hardware design. In this paper, we only focus on the hardware side of the problem. We show how to design configurable fixed-point PIDs to satisfy applications requiring minimal power consumption, or high control-rate, or both together. As multiply operation is the engine of PID, we experienced three algorithms: Booth, modified Booth, and a new recursive multi-bit multiplication algorithm. This later enables the construction of finely grained PID structures with bit-level and unit-time precision. Such a feature permits to tailor the PID to the desired performance and power budget. All PIDs are implemented at register-transfer4evel (RTL) level as technology-independent reusable IP-cores. They are reconfigurable according to two compilemtime constants: set-point word-length and latency. To make PID design easily reproducible, all necessary implementation details are provided and discussed.