In this study,a novel equivalent damping ratio model that is suitable for reinforced concrete(RC)structures considering cyclic degradation behavior is developed,and a new equivalent linearization analysis method for i...In this study,a novel equivalent damping ratio model that is suitable for reinforced concrete(RC)structures considering cyclic degradation behavior is developed,and a new equivalent linearization analysis method for implementing the proposed equivalent damping ratio model for use in seismic damage evaluation is presented.To this end,Ibarra’s peak-oriented model,which incorporates an energy-based degradation rule,is selected for representing hysteretic behavior of RC structure,and the optimized equivalent damping for predicting the maximum displacement response is presented by using the empirical method,in which the effect of cyclic degradation is considered.Moreover,the relationship between the hysteretic energy dissipation of the inelastic system and the elastic strain energy of the equivalent linear system is established so that the proposed equivalent linear system can be directly integrated with the Park-Ang seismic model to implement seismic damage evaluation.Due to the simplicity of the equivalent linearization method,the proposed method provides an efficient and reliable way of obtaining comprehensive insight into the seismic performance of RC structures.The verification demonstrates the validity of the proposed method.展开更多
An efficient approach is proposed for the equivalent linearization of frame structures with plastic hinges under nonstationary seismic excitations.The concentrated plastic hinges,described by the Bouc-Wen model,are as...An efficient approach is proposed for the equivalent linearization of frame structures with plastic hinges under nonstationary seismic excitations.The concentrated plastic hinges,described by the Bouc-Wen model,are assumed to occur at the two ends of a linear-elastic beam element.The auxiliary differential equations governing the plastic rotational displacements and their corresponding hysteretic displacements are replaced with linearized differential equations.Then,the two sets of equations of motion for the original nonlinear system can be reduced to an expanded-order equivalent linearized equation of motion for equivalent linear systems.To solve the equation of motion for equivalent linear systems,the nonstationary random vibration analysis is carried out based on the explicit time-domain method with high efficiency.Finally,the proposed treatment method for initial values of equivalent parameters is investigated in conjunction with parallel computing technology,which provides a new way of obtaining the equivalent linear systems at different time instants.Based on the explicit time-domain method,the key responses of interest of the converged equivalent linear system can be calculated through dimension reduction analysis with high efficiency.Numerical examples indicate that the proposed approach has high computational efficiency,and shows good applicability to weak nonlinear and medium-intensity nonlinear systems.展开更多
In rigid mechanism dynamic analysis, the equivalence theorem is often used due to its simplicity and perceivability. Based on conjugation and duality between inertia energy storing element and elastic energy storing...In rigid mechanism dynamic analysis, the equivalence theorem is often used due to its simplicity and perceivability. Based on conjugation and duality between inertia energy storing element and elastic energy storing element, the equivalence theorem is used in elastic error analysis of planar mechanism. A set of calculation formula of elastic error is introduced, and these equations are similar in expression form to the rigid dynamic equation. To demonstrate the method developed, a computation example is given.展开更多
Equivalent staggered-grid(ESG) as a new family of schemes has been utilized in seismic modeling,imaging,and inversion.Traditionally,the Taylor series expansion is often applied to calculate finite-difference(FD) coeff...Equivalent staggered-grid(ESG) as a new family of schemes has been utilized in seismic modeling,imaging,and inversion.Traditionally,the Taylor series expansion is often applied to calculate finite-difference(FD) coefficients on spatial derivatives,but the simulation results suffer serious numerical dispersion on a large frequency zone.We develop an optimized equivalent staggered-grid(OESG) FD method that can simultaneously suppress temporal and spatial dispersion for solving the second-order system of the 3 D elastic wave equation.On the one hand,we consider the coupling relations between wave speeds and spatial derivatives in the elastic wave equation and give three sets of FD coefficients with respect to the P-wave,S-wave,and converted-wave(C-wave) terms.On the other hand,a novel plane wave solution for the 3 D elastic wave equation is derived from the matrix decomposition method to construct the time-space dispersion relations.FD coefficients of the OESG method can be acquired by solving the new dispersion equations based on the Newton iteration method.Finally,we construct a new objective function to analyze P-wave,S-wave,and C-wave dispersion concerning frequencies.The dispersion analyses show that the presented method produces less modeling errors than the traditional ESG method.The synthetic examples demonstrate the effectiveness and superiority of the presented method.展开更多
The equivalent elastic modulus is a parameter for controlling the deformation behavior of fractured rock masses in the equivalent continuum approach.The confining stress,whose effect on the equivalent elastic modulus ...The equivalent elastic modulus is a parameter for controlling the deformation behavior of fractured rock masses in the equivalent continuum approach.The confining stress,whose effect on the equivalent elastic modulus is of great importance,is the fundamental stress environment of natural rock masses.This paper employs an analytical approach to obtain the equivalent elastic modulus of fractured rock masses containing random discrete fractures(RDFs)or regular fracture sets(RFSs)while considering the confining stress.The proposed analytical solution considers not only the elastic properties of the intact rocks and fractures,but also the geometrical structure of the fractures and the confining stress.The performance of the analytical solution is verified by comparing it with the results of numerical tests obtained using the three-dimensional distinct element code(3DEC),leading to a reasonably good agreement.The analytical solution quantitatively demonstrates that the equivalent elastic modulus increases substantially with an increase in confining stress,i.e.it is characterized by stress-dependency.Further,a sensitivity analysis of the variables in the analytical solution is conducted using a global sensitivity analysis approach,i.e.the extended Fourier amplitude sensitivity test(EFAST).The variations in the sensitivity indices for different ranges and distribution types of the variables are investigated.The results provide an in-depth understanding of the influence of the variables on the equivalent elastic modulus from different perspectives.展开更多
Fracture systems have strong influence on the overall mechanical behavior of fractured rock masses dueto their relatively lower stiffness and shear strength than those of the rock matrix. Understanding theeffects of f...Fracture systems have strong influence on the overall mechanical behavior of fractured rock masses dueto their relatively lower stiffness and shear strength than those of the rock matrix. Understanding theeffects of fracture geometrical distribution, such as length, spacing, persistence and orientation, isimportant for quantifying the mechanical behavior of fractured rock masses. The relation betweenfracture geometry and the mechanical characteristics of the fractured rock mass is complicated due tothe fact that the fracture geometry and mechanical behaviors of fractured rock mass are stronglydependent on the length scale. In this paper, a comprehensive study was conducted to determine theeffects of fracture distribution on the equivalent continuum elastic compliance of fractured rock massesover a wide range of fracture lengths. To account for the stochastic nature of fracture distributions, threedifferent simulation techniques involving Oda's elastic compliance tensor, Monte Carlo simulation (MCS),and suitable probability density functions (PDFs) were employed to represent the elastic compliance offractured rock masses. To yield geologically realistic results, parameters for defining fracture distributionswere obtained from different geological fields. The influence of the key fracture parameters andtheir relations to the overall elastic behavior of the fractured rock mass were studied and discussed. Adetailed study was also carried out to investigate the validity of the use of a representative elementvolume (REV) in the equivalent continuum representation of fractured rock masses. A criterion was alsoproposed to determine the appropriate REV given the fracture distribution of the rock mass.展开更多
Discontinuities constitute an integral part of rock mass and inherently affect its anisotropic deformation behavior.This work focuses on the equivalent elastic deformation of rock mass with multiple persistent joint s...Discontinuities constitute an integral part of rock mass and inherently affect its anisotropic deformation behavior.This work focuses on the equivalent elastic deformation of rock mass with multiple persistent joint sets.A new method based on the space geometric and mechanical properties of the modified crack tensor is proposed,providing an analytical solution for the equivalent elastic compliance tensor of rock mass.A series of experiments validate the capability of the compliance tensor to accurately represent the deformation of rock mass with multiple persistent joint sets,based on conditions set by the basic hypothesis.The spatially varying rules of the equivalent elastic parameters of rock mass with a single joint set are analyzed to reveal the universal law of the stratified rock mass.展开更多
Shrinkage porosity is a type of random distribution defects and exists in most large castings. Different from the periodic symmetry defects or certain distribution defects, shrinkage porosity presents a random "c...Shrinkage porosity is a type of random distribution defects and exists in most large castings. Different from the periodic symmetry defects or certain distribution defects, shrinkage porosity presents a random "cloud-like" configuration, which brings difficulties in quantifying the effective performance of defected casting. In this paper, the influences of random shrinkage porosity on the equivalent elastic modulus of QT400-18 casting were studied by a numerical statistics approach. An improved random algorithm was applied into the lattice model to simulate the "cloud-like" morphology of shrinkage porosity. Then, a large number of numerical samples containing random levels of shrinkage were generated by the proposed algorithm. The stress concentration factor and equivalent elastic modulus of these numerical samples were calculated. Based on a statistical approach, the effects of shrinkage porosity's distribution characteristics, such as area fraction, shape, and relative location on the casting's equivalent mechanical properties were discussed respectively. It is shown that the approach with randomly distributed defects has better predictive capabilities than traditional methods. The following conclusions can be drawn from the statistical simulations:(1) the effective modulus decreases remarkably if the shrinkage porosity percent is greater than 1.5%;(2) the average Stress Concentration Factor(SCF) produced by shrinkage porosity is about 2.0;(3) the defect's length across the loading direction plays a more important role in the effective modulus than the length along the loading direction;(4) the surface defect perpendicular to loading direction reduces the mean modulus about 1.5% more than a defect of other position.展开更多
The relations of all generalized variational principles in elasticity are studied by employing the invariance theorem of field theory. The infinitesimal scale transformation in field theory was employed to investigate...The relations of all generalized variational principles in elasticity are studied by employing the invariance theorem of field theory. The infinitesimal scale transformation in field theory was employed to investigate the equivalent theorem. Among the results found particularly interesting are those related to that all generalized variational principles in elasticity are equal to each other. Also studied result is that only two variables are independent in the functional and the stress-strain relation is the variational constraint condition for all generalized variational principles in elasticity. This work has proven again the conclusion of Prof. Chien Wei-zang.展开更多
The equivalent elastic modulus of cracked bodies with orderly distributed cracks was computed with the boundary element method. A practical self-consistent scheme has been proposed in consideration of the mutual inter...The equivalent elastic modulus of cracked bodies with orderly distributed cracks was computed with the boundary element method. A practical self-consistent scheme has been proposed in consideration of the mutual interaction effects of the cracks. The Influence of friction coefficients and orientation of cracks has been investigated. Some computational examples have been given, and the results show that the proposed method is adequate and the scheme is efficient.展开更多
The main aim of this article is to study the approximation of a locking-free anisotropic nonconforming finite element for the pure displacement boundary value problem of planar linear elasticity. The optimal error est...The main aim of this article is to study the approximation of a locking-free anisotropic nonconforming finite element for the pure displacement boundary value problem of planar linear elasticity. The optimal error estimates are obtained by using some novel approaches and techniques. The method proposed in this article is robust in the sense that the convergence estimates in the energy and L^2-norms are independent-of the Lame parameter λ.展开更多
The equivalent linearization method approximates the maximum displacement response of nonlinear structures through the corresponding equivalent linear system. By using the particle swarm optimization technique, a new ...The equivalent linearization method approximates the maximum displacement response of nonlinear structures through the corresponding equivalent linear system. By using the particle swarm optimization technique, a new statistical approach is developed to determine the key parameters of such an equivalent linear system over a 2D space of period and damping ratio. The new optimization criterion realizes the consideration of the structural safety margin in the equivalent linearization method when applied to the performance-based seismic design/evaluation of engineering structures. As an application, equations for equivalent system parameters of both bilinear hysteretic and stiffness degrading single-degree-of- freedom systems are deduced with the assumption of a constant ductility ratio. Error analyses are also performed to validate the proposed approach.展开更多
C^1 natural element method (C^1 NEM) is applied to strain gradient linear elasticity, and size effects on mi crostructures are analyzed. The shape functions in C^1 NEM are built upon the natural neighbor interpolati...C^1 natural element method (C^1 NEM) is applied to strain gradient linear elasticity, and size effects on mi crostructures are analyzed. The shape functions in C^1 NEM are built upon the natural neighbor interpolation (NNI), with interpolation realized to nodal function and nodal gradient values, so that the essential boundary conditions (EBCs) can be imposed directly in a Galerkin scheme for partial differential equations (PDEs). In the present paper, C^1 NEM for strain gradient linear elasticity is constructed, and sev- eral typical examples which have analytical solutions are presented to illustrate the effectiveness of the constructed method. In its application to microstructures, the size effects of bending stiffness and stress concentration factor (SCF) are studied for microspeciem and microgripper, respectively. It is observed that the size effects become rather strong when the width of spring for microgripper, the radius of circular perforation and the long axis of elliptical perforation for microspeciem come close to the material characteristic length scales. For the U-shaped notch, the size effects decline obviously with increasing notch radius, and decline mildly with increasing length of notch.展开更多
In the present paper we investigate linear elastic systems with damping in Hilbert spaces, where A and B ars unbounded positive definite linear operators. We have obtained the most fundamental results for the holomorp...In the present paper we investigate linear elastic systems with damping in Hilbert spaces, where A and B ars unbounded positive definite linear operators. We have obtained the most fundamental results for the holomorphic property and exponential stability of the semigroups associated with these systems via inclusion relation of the domains of A and B.展开更多
In this paper,the node based smoothed-strain Abaqus user element(UEL)in the framework of finite element method is introduced.The basic idea behind of the node based smoothed finite element(NSFEM)is that finite element...In this paper,the node based smoothed-strain Abaqus user element(UEL)in the framework of finite element method is introduced.The basic idea behind of the node based smoothed finite element(NSFEM)is that finite element cells are divided into subcells and subcells construct the smoothing domain associated with each node of a finite element cell[Liu,Dai and Nguyen-Thoi(2007)].Therefore,the numerical integration is globally performed over smoothing domains.It is demonstrated that the proposed UEL retains all the advantages of the NSFEM,i.e.,upper bound solution,overly soft stiffness and free from locking in compressible and nearly-incompressible media.In this work,the constant strain triangular(CST)elements are used to construct node based smoothing domains,since any complex two dimensional domains can be discretized using CST elements.This additional challenge is successfully addressed in this paper.The efficacy and robustness of the proposed work is obtained by several benchmark problems in both linear and nonlinear elasticity.The developed UEL and the associated files can be downloaded from https://github.com/nsundar/NSFEM.展开更多
As suggested by the title, this extensive book is concerned with crack and contact prob- lems in linear elasticity. However, in general, it is intended for a wide audience ranging from engineers to mathematical physic...As suggested by the title, this extensive book is concerned with crack and contact prob- lems in linear elasticity. However, in general, it is intended for a wide audience ranging from engineers to mathematical physicists. Indeed, numerous problems of both academic and tech- nological interest in electro-magnetics, acoustics, solid and fluid dynamics, etc. are actually related to each other and governed by the same mixed boundary value problems from a unified mathematical standpoint展开更多
The linear elasticity was studied in a martens- tic alloy NisoMn25Ga9Cu16. A 0.4 % linear elastic strain is btained in the polycrystalline sample under compressive stress of 745 MPa. The elastic modulus is 186 GPa. Th...The linear elasticity was studied in a martens- tic alloy NisoMn25Ga9Cu16. A 0.4 % linear elastic strain is btained in the polycrystalline sample under compressive stress of 745 MPa. The elastic modulus is 186 GPa. The obtained linear elastic strain and elastic modulus are much higher than that of ternary Ni-Mn-Ga martensitic alloys.~.bstract The linear elasticity was studied in a martens- tic alloy NisoMn25Ga9Cu16. A 0.4 % linear elastic strain is ~btained in the polycrystalline sample under compressive stress of 745 MPa. The elastic modulus is 186 GPa. The obtained linear elastic strain and elastic modulus are much higher than that of ternary Ni-Mn-Ga martensitic alloys.展开更多
An analytical model of hydraulic damper was presented in forward flight accounting for pitch/flap/lag kinematic coupling and its nonlinear force-velocity curve. The fourth order Runge-Kutta was applied to calculate th...An analytical model of hydraulic damper was presented in forward flight accounting for pitch/flap/lag kinematic coupling and its nonlinear force-velocity curve. The fourth order Runge-Kutta was applied to calculate the damper axial velocity in time domain. Fourier series based moving block analysis was applied to calculate equivalent linear damping in terms of transient responses of damper axial velocity. Results indicate that equivalent linear damping will be significantly reduced if pitch/flap/lag kinematic coupling introduced for notional model and flight conditions.展开更多
The prediction on small disturbance propagation in complex three-dimensional(3D) boundary layers is of great significance in transition prediction methodology, especially in the aircraft design. In this paper, the lin...The prediction on small disturbance propagation in complex three-dimensional(3D) boundary layers is of great significance in transition prediction methodology, especially in the aircraft design. In this paper, the linear stability theory(LST) with the equivalent spanwise wavenumber correction(ESWC) is proposed in order to accurately predict the linear evolution of a disturbance in a kind of boundary layer flow with a vital variation in the spanwise direction. The LST with the ESWC takes not only the scale of the mean flow with the significant variation but also the wavenumber evolution of the disturbance itself. Compared with the conventional LST, the results obtained by the new method are in excellent agreement with those of the numerical simulations. The LST with the ESWC is an effective method on the prediction of the disturbance evolution in 3D boundary layers, which improves the prediction of the LST in the applications to complex 3D boundary layers greatly.展开更多
In this paper, it is proven that the balance equation of energy is the first integral of the balance equation of momentum in the linear theory of nonlocal elasticity. In other words, the balance equation of energy is ...In this paper, it is proven that the balance equation of energy is the first integral of the balance equation of momentum in the linear theory of nonlocal elasticity. In other words, the balance equation of energy is not an independent one. It is also proven that the residual of nonlocal body force identically equals zero. This makes the transform formula of the nonlocal residual of energy much simpler. The linear nonlocal constitutive equations of elastic bodies are deduced in details, and a new formula to calculate the antisymmetric stress is given.展开更多
基金National Natural Science Foundation of China under Grant No.51978125Open Fund Project of Research Center for Geotechnical and Structural Engineering Technology of Liaoning Province under Grant No.DLSZD2023[007]。
文摘In this study,a novel equivalent damping ratio model that is suitable for reinforced concrete(RC)structures considering cyclic degradation behavior is developed,and a new equivalent linearization analysis method for implementing the proposed equivalent damping ratio model for use in seismic damage evaluation is presented.To this end,Ibarra’s peak-oriented model,which incorporates an energy-based degradation rule,is selected for representing hysteretic behavior of RC structure,and the optimized equivalent damping for predicting the maximum displacement response is presented by using the empirical method,in which the effect of cyclic degradation is considered.Moreover,the relationship between the hysteretic energy dissipation of the inelastic system and the elastic strain energy of the equivalent linear system is established so that the proposed equivalent linear system can be directly integrated with the Park-Ang seismic model to implement seismic damage evaluation.Due to the simplicity of the equivalent linearization method,the proposed method provides an efficient and reliable way of obtaining comprehensive insight into the seismic performance of RC structures.The verification demonstrates the validity of the proposed method.
基金Fundamental Research Funds for the Central Universities under Grant No.2682022CX072the Research and Development Plan in Key Areas of Guangdong Province under Grant No.2020B0202010008。
文摘An efficient approach is proposed for the equivalent linearization of frame structures with plastic hinges under nonstationary seismic excitations.The concentrated plastic hinges,described by the Bouc-Wen model,are assumed to occur at the two ends of a linear-elastic beam element.The auxiliary differential equations governing the plastic rotational displacements and their corresponding hysteretic displacements are replaced with linearized differential equations.Then,the two sets of equations of motion for the original nonlinear system can be reduced to an expanded-order equivalent linearized equation of motion for equivalent linear systems.To solve the equation of motion for equivalent linear systems,the nonstationary random vibration analysis is carried out based on the explicit time-domain method with high efficiency.Finally,the proposed treatment method for initial values of equivalent parameters is investigated in conjunction with parallel computing technology,which provides a new way of obtaining the equivalent linear systems at different time instants.Based on the explicit time-domain method,the key responses of interest of the converged equivalent linear system can be calculated through dimension reduction analysis with high efficiency.Numerical examples indicate that the proposed approach has high computational efficiency,and shows good applicability to weak nonlinear and medium-intensity nonlinear systems.
文摘In rigid mechanism dynamic analysis, the equivalence theorem is often used due to its simplicity and perceivability. Based on conjugation and duality between inertia energy storing element and elastic energy storing element, the equivalence theorem is used in elastic error analysis of planar mechanism. A set of calculation formula of elastic error is introduced, and these equations are similar in expression form to the rigid dynamic equation. To demonstrate the method developed, a computation example is given.
文摘Equivalent staggered-grid(ESG) as a new family of schemes has been utilized in seismic modeling,imaging,and inversion.Traditionally,the Taylor series expansion is often applied to calculate finite-difference(FD) coefficients on spatial derivatives,but the simulation results suffer serious numerical dispersion on a large frequency zone.We develop an optimized equivalent staggered-grid(OESG) FD method that can simultaneously suppress temporal and spatial dispersion for solving the second-order system of the 3 D elastic wave equation.On the one hand,we consider the coupling relations between wave speeds and spatial derivatives in the elastic wave equation and give three sets of FD coefficients with respect to the P-wave,S-wave,and converted-wave(C-wave) terms.On the other hand,a novel plane wave solution for the 3 D elastic wave equation is derived from the matrix decomposition method to construct the time-space dispersion relations.FD coefficients of the OESG method can be acquired by solving the new dispersion equations based on the Newton iteration method.Finally,we construct a new objective function to analyze P-wave,S-wave,and C-wave dispersion concerning frequencies.The dispersion analyses show that the presented method produces less modeling errors than the traditional ESG method.The synthetic examples demonstrate the effectiveness and superiority of the presented method.
基金financially supported by the National Nature Science Foundation of China (Grant Nos. 42022053 and 41877220)
文摘The equivalent elastic modulus is a parameter for controlling the deformation behavior of fractured rock masses in the equivalent continuum approach.The confining stress,whose effect on the equivalent elastic modulus is of great importance,is the fundamental stress environment of natural rock masses.This paper employs an analytical approach to obtain the equivalent elastic modulus of fractured rock masses containing random discrete fractures(RDFs)or regular fracture sets(RFSs)while considering the confining stress.The proposed analytical solution considers not only the elastic properties of the intact rocks and fractures,but also the geometrical structure of the fractures and the confining stress.The performance of the analytical solution is verified by comparing it with the results of numerical tests obtained using the three-dimensional distinct element code(3DEC),leading to a reasonably good agreement.The analytical solution quantitatively demonstrates that the equivalent elastic modulus increases substantially with an increase in confining stress,i.e.it is characterized by stress-dependency.Further,a sensitivity analysis of the variables in the analytical solution is conducted using a global sensitivity analysis approach,i.e.the extended Fourier amplitude sensitivity test(EFAST).The variations in the sensitivity indices for different ranges and distribution types of the variables are investigated.The results provide an in-depth understanding of the influence of the variables on the equivalent elastic modulus from different perspectives.
基金supported as part of the project funded by the U.S.Department of Energy under Grant No.DE-FE0002058
文摘Fracture systems have strong influence on the overall mechanical behavior of fractured rock masses dueto their relatively lower stiffness and shear strength than those of the rock matrix. Understanding theeffects of fracture geometrical distribution, such as length, spacing, persistence and orientation, isimportant for quantifying the mechanical behavior of fractured rock masses. The relation betweenfracture geometry and the mechanical characteristics of the fractured rock mass is complicated due tothe fact that the fracture geometry and mechanical behaviors of fractured rock mass are stronglydependent on the length scale. In this paper, a comprehensive study was conducted to determine theeffects of fracture distribution on the equivalent continuum elastic compliance of fractured rock massesover a wide range of fracture lengths. To account for the stochastic nature of fracture distributions, threedifferent simulation techniques involving Oda's elastic compliance tensor, Monte Carlo simulation (MCS),and suitable probability density functions (PDFs) were employed to represent the elastic compliance offractured rock masses. To yield geologically realistic results, parameters for defining fracture distributionswere obtained from different geological fields. The influence of the key fracture parameters andtheir relations to the overall elastic behavior of the fractured rock mass were studied and discussed. Adetailed study was also carried out to investigate the validity of the use of a representative elementvolume (REV) in the equivalent continuum representation of fractured rock masses. A criterion was alsoproposed to determine the appropriate REV given the fracture distribution of the rock mass.
基金Projects(41172284,51379202) supported by the National Natural Science Foundation of ChinaProject(2013CB036405) supported by the National Basic Research Program of ChinaProject(2013BAB02B01) supported by the National Key Technologies R&D Program of China
文摘Discontinuities constitute an integral part of rock mass and inherently affect its anisotropic deformation behavior.This work focuses on the equivalent elastic deformation of rock mass with multiple persistent joint sets.A new method based on the space geometric and mechanical properties of the modified crack tensor is proposed,providing an analytical solution for the equivalent elastic compliance tensor of rock mass.A series of experiments validate the capability of the compliance tensor to accurately represent the deformation of rock mass with multiple persistent joint sets,based on conditions set by the basic hypothesis.The spatially varying rules of the equivalent elastic parameters of rock mass with a single joint set are analyzed to reveal the universal law of the stratified rock mass.
基金supported by the National Natural Science Foundation of China(Grant No.51305350)the Basic Research Foundation of NWPU(No.3102014JCQ01045)
文摘Shrinkage porosity is a type of random distribution defects and exists in most large castings. Different from the periodic symmetry defects or certain distribution defects, shrinkage porosity presents a random "cloud-like" configuration, which brings difficulties in quantifying the effective performance of defected casting. In this paper, the influences of random shrinkage porosity on the equivalent elastic modulus of QT400-18 casting were studied by a numerical statistics approach. An improved random algorithm was applied into the lattice model to simulate the "cloud-like" morphology of shrinkage porosity. Then, a large number of numerical samples containing random levels of shrinkage were generated by the proposed algorithm. The stress concentration factor and equivalent elastic modulus of these numerical samples were calculated. Based on a statistical approach, the effects of shrinkage porosity's distribution characteristics, such as area fraction, shape, and relative location on the casting's equivalent mechanical properties were discussed respectively. It is shown that the approach with randomly distributed defects has better predictive capabilities than traditional methods. The following conclusions can be drawn from the statistical simulations:(1) the effective modulus decreases remarkably if the shrinkage porosity percent is greater than 1.5%;(2) the average Stress Concentration Factor(SCF) produced by shrinkage porosity is about 2.0;(3) the defect's length across the loading direction plays a more important role in the effective modulus than the length along the loading direction;(4) the surface defect perpendicular to loading direction reduces the mean modulus about 1.5% more than a defect of other position.
文摘The relations of all generalized variational principles in elasticity are studied by employing the invariance theorem of field theory. The infinitesimal scale transformation in field theory was employed to investigate the equivalent theorem. Among the results found particularly interesting are those related to that all generalized variational principles in elasticity are equal to each other. Also studied result is that only two variables are independent in the functional and the stress-strain relation is the variational constraint condition for all generalized variational principles in elasticity. This work has proven again the conclusion of Prof. Chien Wei-zang.
基金the National Natural Science Foundation of China
文摘The equivalent elastic modulus of cracked bodies with orderly distributed cracks was computed with the boundary element method. A practical self-consistent scheme has been proposed in consideration of the mutual interaction effects of the cracks. The Influence of friction coefficients and orientation of cracks has been investigated. Some computational examples have been given, and the results show that the proposed method is adequate and the scheme is efficient.
基金The research is supported by NSF of China (10371113 10471133)
文摘The main aim of this article is to study the approximation of a locking-free anisotropic nonconforming finite element for the pure displacement boundary value problem of planar linear elasticity. The optimal error estimates are obtained by using some novel approaches and techniques. The method proposed in this article is robust in the sense that the convergence estimates in the energy and L^2-norms are independent-of the Lame parameter λ.
文摘The equivalent linearization method approximates the maximum displacement response of nonlinear structures through the corresponding equivalent linear system. By using the particle swarm optimization technique, a new statistical approach is developed to determine the key parameters of such an equivalent linear system over a 2D space of period and damping ratio. The new optimization criterion realizes the consideration of the structural safety margin in the equivalent linearization method when applied to the performance-based seismic design/evaluation of engineering structures. As an application, equations for equivalent system parameters of both bilinear hysteretic and stiffness degrading single-degree-of- freedom systems are deduced with the assumption of a constant ductility ratio. Error analyses are also performed to validate the proposed approach.
基金supported by the SDUST Spring Bud (2009AZZ021)Taian Science and Technology Development (20112001)
文摘C^1 natural element method (C^1 NEM) is applied to strain gradient linear elasticity, and size effects on mi crostructures are analyzed. The shape functions in C^1 NEM are built upon the natural neighbor interpolation (NNI), with interpolation realized to nodal function and nodal gradient values, so that the essential boundary conditions (EBCs) can be imposed directly in a Galerkin scheme for partial differential equations (PDEs). In the present paper, C^1 NEM for strain gradient linear elasticity is constructed, and sev- eral typical examples which have analytical solutions are presented to illustrate the effectiveness of the constructed method. In its application to microstructures, the size effects of bending stiffness and stress concentration factor (SCF) are studied for microspeciem and microgripper, respectively. It is observed that the size effects become rather strong when the width of spring for microgripper, the radius of circular perforation and the long axis of elliptical perforation for microspeciem come close to the material characteristic length scales. For the U-shaped notch, the size effects decline obviously with increasing notch radius, and decline mildly with increasing length of notch.
文摘In the present paper we investigate linear elastic systems with damping in Hilbert spaces, where A and B ars unbounded positive definite linear operators. We have obtained the most fundamental results for the holomorphic property and exponential stability of the semigroups associated with these systems via inclusion relation of the domains of A and B.
文摘In this paper,the node based smoothed-strain Abaqus user element(UEL)in the framework of finite element method is introduced.The basic idea behind of the node based smoothed finite element(NSFEM)is that finite element cells are divided into subcells and subcells construct the smoothing domain associated with each node of a finite element cell[Liu,Dai and Nguyen-Thoi(2007)].Therefore,the numerical integration is globally performed over smoothing domains.It is demonstrated that the proposed UEL retains all the advantages of the NSFEM,i.e.,upper bound solution,overly soft stiffness and free from locking in compressible and nearly-incompressible media.In this work,the constant strain triangular(CST)elements are used to construct node based smoothing domains,since any complex two dimensional domains can be discretized using CST elements.This additional challenge is successfully addressed in this paper.The efficacy and robustness of the proposed work is obtained by several benchmark problems in both linear and nonlinear elasticity.The developed UEL and the associated files can be downloaded from https://github.com/nsundar/NSFEM.
文摘As suggested by the title, this extensive book is concerned with crack and contact prob- lems in linear elasticity. However, in general, it is intended for a wide audience ranging from engineers to mathematical physicists. Indeed, numerous problems of both academic and tech- nological interest in electro-magnetics, acoustics, solid and fluid dynamics, etc. are actually related to each other and governed by the same mixed boundary value problems from a unified mathematical standpoint
基金financially supported by the National Basic Research Program of China (973 Program) under grant 2012CB619404the National Natural Science Foundations of China(Nos. 50925101,51221163, and 51001004)the National Basic Research Program of China (No. 2012CB619404)
文摘The linear elasticity was studied in a martens- tic alloy NisoMn25Ga9Cu16. A 0.4 % linear elastic strain is btained in the polycrystalline sample under compressive stress of 745 MPa. The elastic modulus is 186 GPa. The obtained linear elastic strain and elastic modulus are much higher than that of ternary Ni-Mn-Ga martensitic alloys.~.bstract The linear elasticity was studied in a martens- tic alloy NisoMn25Ga9Cu16. A 0.4 % linear elastic strain is ~btained in the polycrystalline sample under compressive stress of 745 MPa. The elastic modulus is 186 GPa. The obtained linear elastic strain and elastic modulus are much higher than that of ternary Ni-Mn-Ga martensitic alloys.
文摘An analytical model of hydraulic damper was presented in forward flight accounting for pitch/flap/lag kinematic coupling and its nonlinear force-velocity curve. The fourth order Runge-Kutta was applied to calculate the damper axial velocity in time domain. Fourier series based moving block analysis was applied to calculate equivalent linear damping in terms of transient responses of damper axial velocity. Results indicate that equivalent linear damping will be significantly reduced if pitch/flap/lag kinematic coupling introduced for notional model and flight conditions.
基金Project supported by the National Key Research and Development(R&D)Program of China(No.2016YFA0401200)the National Natural Science Foundation of China(Nos.11402167,11332007,11672204,11672205,and 11732011)
文摘The prediction on small disturbance propagation in complex three-dimensional(3D) boundary layers is of great significance in transition prediction methodology, especially in the aircraft design. In this paper, the linear stability theory(LST) with the equivalent spanwise wavenumber correction(ESWC) is proposed in order to accurately predict the linear evolution of a disturbance in a kind of boundary layer flow with a vital variation in the spanwise direction. The LST with the ESWC takes not only the scale of the mean flow with the significant variation but also the wavenumber evolution of the disturbance itself. Compared with the conventional LST, the results obtained by the new method are in excellent agreement with those of the numerical simulations. The LST with the ESWC is an effective method on the prediction of the disturbance evolution in 3D boundary layers, which improves the prediction of the LST in the applications to complex 3D boundary layers greatly.
文摘In this paper, it is proven that the balance equation of energy is the first integral of the balance equation of momentum in the linear theory of nonlocal elasticity. In other words, the balance equation of energy is not an independent one. It is also proven that the residual of nonlocal body force identically equals zero. This makes the transform formula of the nonlocal residual of energy much simpler. The linear nonlocal constitutive equations of elastic bodies are deduced in details, and a new formula to calculate the antisymmetric stress is given.