A linear-correction least-squares(LCLS) estimation procedure is proposed for geolocation using frequency difference of arrival (FDOA) measurements only. We first analyze the measurements of FDOA, and further deriv...A linear-correction least-squares(LCLS) estimation procedure is proposed for geolocation using frequency difference of arrival (FDOA) measurements only. We first analyze the measurements of FDOA, and further derive the Cramer-Rao lower bound (CRLB) of geoloeation using FDOA measurements. For the localization model is a nonlinear least squares(LS) estimator with a nonlinear constrained, a linearizing method is used to convert the model to a linear least squares estimator with a nonlinear con- strained. The Gauss-Newton iteration method is developed to conquer the source localization problem. From the analysis of solving Lagrange multiplier, the algorithm is a generalization of linear-correction least squares estimation procedure under the condition of geolocation using FDOA measurements only. The algorithm is compared with common least squares estimation. Comparisons of their estimation accuracy and the CRLB are made, and the proposed method attains the CRLB. Simulation re- sults are included to corroborate the theoretical development.展开更多
基金National High-tech Research and Development Program of China (2011AA7072043)National Defense Key Laboratory Foundation of China (9140C860304)Innovation Fund of Graduate School of NUDT (B120406)
文摘A linear-correction least-squares(LCLS) estimation procedure is proposed for geolocation using frequency difference of arrival (FDOA) measurements only. We first analyze the measurements of FDOA, and further derive the Cramer-Rao lower bound (CRLB) of geoloeation using FDOA measurements. For the localization model is a nonlinear least squares(LS) estimator with a nonlinear constrained, a linearizing method is used to convert the model to a linear least squares estimator with a nonlinear con- strained. The Gauss-Newton iteration method is developed to conquer the source localization problem. From the analysis of solving Lagrange multiplier, the algorithm is a generalization of linear-correction least squares estimation procedure under the condition of geolocation using FDOA measurements only. The algorithm is compared with common least squares estimation. Comparisons of their estimation accuracy and the CRLB are made, and the proposed method attains the CRLB. Simulation re- sults are included to corroborate the theoretical development.