In the reliability analysis of complex structures,response surface method(RSM)has been suggested as an efficient technique to estimate the actual but implicit limit state function.A set of sample points are needed to ...In the reliability analysis of complex structures,response surface method(RSM)has been suggested as an efficient technique to estimate the actual but implicit limit state function.A set of sample points are needed to fit to the implicit function.It has been noted that the accuracy of RSM depends highly on the so-called sample points.However,the technique for point selection has had little attention.In the present study,an improved response surface method(IRSM)based on two sample point selection techniques,named the direction cosines projected strategy(DCS)and the limit step length iteration strategy(LSS),is investigated.Since it uses the sampling points selected to be located in the region close to the original failure surface,and since it needs only one response surface,the IRSM should be accurate and simple in practical structural problems.Applications to several typical examples have helped to elucidate the successful working of the IRSM.展开更多
The effect on intensity correlation time T by input signal is studied for gain-noise model of a single-mode laser driven by colored pump noise and colored quantum noise with colored cross-correlation with a bias signa...The effect on intensity correlation time T by input signal is studied for gain-noise model of a single-mode laser driven by colored pump noise and colored quantum noise with colored cross-correlation with a bias signal modulation in this paper. By using the linear approximation method, we detect that there exists maximum (i.e., resonance) in the curve of the intensity correlation time T upon bias current io when the noise correlation coefficient λ is positive; and there exists minimum (i.e., suppression) in the T-io curve when λ is negative. And whenλ is zero, T increases monotonously with increasing io. Furthermore, the curve of T upon the signal frequency Ω is also studied. Our study shows that no matter what the value of λ is, there exists minimum (i.e., suppression) in the T-Ω curve.展开更多
By using the linear approximation method, the intensity correlation function is calculated for a single-mode laser modulated by a bias signal and driven by colored pump and quantum noises with colored cross-correlatio...By using the linear approximation method, the intensity correlation function is calculated for a single-mode laser modulated by a bias signal and driven by colored pump and quantum noises with colored cross-correlation. We found that, when the correlation time between the two noises is very short, the behavior of the intensity correlation function versus the time, in addition to decreasing monotonously, also exhibits several cases, such as one maximum, one minimum, and two extrema. When the correlation time between the two noises is very long, the behavior of the intensity correlation function exhibits oscillation and the envelope is similar to the case of short cross-correlation time.展开更多
Due to the zero dispersion point at 1.3μm in optical fibres, 1.3-μm InGaAsP/InP laser diodes have become main light sources in fibre communication systems recently. Influences of quantum noises on direct-modulated p...Due to the zero dispersion point at 1.3μm in optical fibres, 1.3-μm InGaAsP/InP laser diodes have become main light sources in fibre communication systems recently. Influences of quantum noises on direct-modulated properties of single-mode 1.3-μm InGaAsP/InP laser diodes are investigated in this article. Considering the carrier and photon noises and the cross-correlation between the two noises, the power spectrum of the photon density and the signal-to-noise ratio (SNR) of the direct-modulated single-mode laser system are calculated using the linear approximation method. We find that the stochastic resonance (SR) always appears in the dependence of the SNR on the bias current density, and is strongly affected by the cross-correlation coefficient between the carrier and photon noises, the frequency of modulation signal, and the photon lifetime in the laser cavity. Hence, it is promising to use the SR mechanism to enhance the SNR of direct-modulated InGaAsP/InP laser diodes and improve the quality of optical fibre communication systems.展开更多
Stochastic resonance (SR) is studied in a gain-noise model of a single-mode laser driven by a coloured pump noise and a quantum noise with cross-correlation between real and imaginary parts under a direct signal mod...Stochastic resonance (SR) is studied in a gain-noise model of a single-mode laser driven by a coloured pump noise and a quantum noise with cross-correlation between real and imaginary parts under a direct signal modulation. By using a linear approximation method, we find that the SR appears during the variation of signal-to-noise ratio (SNR) separately with the pump noise self-correlation time τ, the noise correlation coefficient between the real part and the imaginary part of the quantum noise λq, the attenuation coefficient γ' and the deterministic steady-state intensity I0. In addition, it is found that the SR can be characterized not only by the dependence of SNR on the noise variables of and λq, but also by the dependence of SNR on the laser system variables of γ and I0. Thus our investigation extends the characteristic quantity of SR proposed before.展开更多
Nonlinear rank-one modification of the symmetric eigenvalue problem arises from eigenvibrations of mechanical structures with elastically attached loads and calculation of the propagation modes in optical fiber. In th...Nonlinear rank-one modification of the symmetric eigenvalue problem arises from eigenvibrations of mechanical structures with elastically attached loads and calculation of the propagation modes in optical fiber. In this paper, we first study the existence and uniqueness of eigenvalues, and then investigate three numerical algorithms, namely Picard iteration, nonlinear Rayleigh quotient iteration and successive linear approximation method (SLAM). The global convergence of the SLAM is proven under some mild assumptions. Numerical examples illustrate that the SLAM is the most robust method.展开更多
文摘In the reliability analysis of complex structures,response surface method(RSM)has been suggested as an efficient technique to estimate the actual but implicit limit state function.A set of sample points are needed to fit to the implicit function.It has been noted that the accuracy of RSM depends highly on the so-called sample points.However,the technique for point selection has had little attention.In the present study,an improved response surface method(IRSM)based on two sample point selection techniques,named the direction cosines projected strategy(DCS)and the limit step length iteration strategy(LSS),is investigated.Since it uses the sampling points selected to be located in the region close to the original failure surface,and since it needs only one response surface,the IRSM should be accurate and simple in practical structural problems.Applications to several typical examples have helped to elucidate the successful working of the IRSM.
文摘The effect on intensity correlation time T by input signal is studied for gain-noise model of a single-mode laser driven by colored pump noise and colored quantum noise with colored cross-correlation with a bias signal modulation in this paper. By using the linear approximation method, we detect that there exists maximum (i.e., resonance) in the curve of the intensity correlation time T upon bias current io when the noise correlation coefficient λ is positive; and there exists minimum (i.e., suppression) in the T-io curve when λ is negative. And whenλ is zero, T increases monotonously with increasing io. Furthermore, the curve of T upon the signal frequency Ω is also studied. Our study shows that no matter what the value of λ is, there exists minimum (i.e., suppression) in the T-Ω curve.
文摘By using the linear approximation method, the intensity correlation function is calculated for a single-mode laser modulated by a bias signal and driven by colored pump and quantum noises with colored cross-correlation. We found that, when the correlation time between the two noises is very short, the behavior of the intensity correlation function versus the time, in addition to decreasing monotonously, also exhibits several cases, such as one maximum, one minimum, and two extrema. When the correlation time between the two noises is very long, the behavior of the intensity correlation function exhibits oscillation and the envelope is similar to the case of short cross-correlation time.
基金Project supported by the National Natural Science Foundation of China (Grant No 10275025).
文摘Due to the zero dispersion point at 1.3μm in optical fibres, 1.3-μm InGaAsP/InP laser diodes have become main light sources in fibre communication systems recently. Influences of quantum noises on direct-modulated properties of single-mode 1.3-μm InGaAsP/InP laser diodes are investigated in this article. Considering the carrier and photon noises and the cross-correlation between the two noises, the power spectrum of the photon density and the signal-to-noise ratio (SNR) of the direct-modulated single-mode laser system are calculated using the linear approximation method. We find that the stochastic resonance (SR) always appears in the dependence of the SNR on the bias current density, and is strongly affected by the cross-correlation coefficient between the carrier and photon noises, the frequency of modulation signal, and the photon lifetime in the laser cavity. Hence, it is promising to use the SR mechanism to enhance the SNR of direct-modulated InGaAsP/InP laser diodes and improve the quality of optical fibre communication systems.
基金Project supported by the National Natural Science Foundation of China (Grant No 10275025).
文摘Stochastic resonance (SR) is studied in a gain-noise model of a single-mode laser driven by a coloured pump noise and a quantum noise with cross-correlation between real and imaginary parts under a direct signal modulation. By using a linear approximation method, we find that the SR appears during the variation of signal-to-noise ratio (SNR) separately with the pump noise self-correlation time τ, the noise correlation coefficient between the real part and the imaginary part of the quantum noise λq, the attenuation coefficient γ' and the deterministic steady-state intensity I0. In addition, it is found that the SR can be characterized not only by the dependence of SNR on the noise variables of and λq, but also by the dependence of SNR on the laser system variables of γ and I0. Thus our investigation extends the characteristic quantity of SR proposed before.
基金supported in part by NSF grants DMS-0611548 and OCI-0749217 and DOE grant DE-FC02-06ER25794supported in part by NSF of China under the contract number 10871049 and Shanghai Down project 200601.
文摘Nonlinear rank-one modification of the symmetric eigenvalue problem arises from eigenvibrations of mechanical structures with elastically attached loads and calculation of the propagation modes in optical fiber. In this paper, we first study the existence and uniqueness of eigenvalues, and then investigate three numerical algorithms, namely Picard iteration, nonlinear Rayleigh quotient iteration and successive linear approximation method (SLAM). The global convergence of the SLAM is proven under some mild assumptions. Numerical examples illustrate that the SLAM is the most robust method.