期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
A Novel Method to Enhance the Inversion Speed and Precision of the NMR T_(2) Spectrum by the TSVD Based Linearized Bregman Iteration
1
作者 Yiguo Chen Congjun Feng +4 位作者 Yonghong He Zhijun Chen Xiaowei Fan Chao Wang Xinmin Ge 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第9期2451-2463,共13页
The low-field nuclear magnetic resonance(NMR)technique has been used to probe the pore size distribution and the fluid composition in geophysical prospecting and related fields.However,the speed and accuracy of the ex... The low-field nuclear magnetic resonance(NMR)technique has been used to probe the pore size distribution and the fluid composition in geophysical prospecting and related fields.However,the speed and accuracy of the existing numerical inversion methods are still challenging due to the ill-posed nature of the first kind Fredholm integral equation and the contamination of the noises.This paper proposes a novel inversion algorithmto accelerate the convergence and enhance the precision using empirical truncated singular value decompositions(TSVD)and the linearized Bregman iteration.The L1 penalty term is applied to construct the objective function,and then the linearized Bregman iteration is utilized to obtain fast convergence.To reduce the complexity of the computation,empirical TSVD is proposed to compress the kernel matrix and determine the appropriate truncated position.This novel inversion method is validated using numerical simulations.The results indicate that the proposed novel method is significantly efficient and can achieve quick and effective data solutions with low signal-to-noise ratios. 展开更多
关键词 Low field nuclear magnetic resonance linearized bregman iteration truncated singular value decomposition numerical simulations
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部