The bending problem of a functionally graded anisotropic cantilever beam subjected to a linearly distributed load is investigated. The analysis is based on the exact elasticity equations for the plane stress problem. ...The bending problem of a functionally graded anisotropic cantilever beam subjected to a linearly distributed load is investigated. The analysis is based on the exact elasticity equations for the plane stress problem. The stress function is introduced and assumed in the form of a polynomial of the longitudinal coordinate. The expressions for stress components are then educed from the stress function by simple differentiation. The stress function is determined from the compatibility equation as well as the boundary conditions by a skilful deduction. The analytical solution is compared with FEM calculation, indicating a good agreement.展开更多
基金Project supported by the National Natural Science Foundation of China(Nos.10472102 and 10432030)
文摘The bending problem of a functionally graded anisotropic cantilever beam subjected to a linearly distributed load is investigated. The analysis is based on the exact elasticity equations for the plane stress problem. The stress function is introduced and assumed in the form of a polynomial of the longitudinal coordinate. The expressions for stress components are then educed from the stress function by simple differentiation. The stress function is determined from the compatibility equation as well as the boundary conditions by a skilful deduction. The analytical solution is compared with FEM calculation, indicating a good agreement.