This paper studied the stress corrosion cracking(SCC)of EV31A in 0.1 M Na 2 SO 4 saturated with Mg(OH)2 using linearly increasing stress tests,compared with pure Mg and WE43B.All three materials were susceptible to SC...This paper studied the stress corrosion cracking(SCC)of EV31A in 0.1 M Na 2 SO 4 saturated with Mg(OH)2 using linearly increasing stress tests,compared with pure Mg and WE43B.All three materials were susceptible to SCC.SCC susceptibility increased with decreasing applied stress rate.The threshold stress was 0.3×(yield stress)for pure Mg,0.6×(yield stress)for EV31A,and 0.8×(yield stress)for WE43B.The SCC velocities at an applied stress rate of 7.3×10^(-4)MPa s^(-1)were 7.2×10^(-8)m s^(−1)for pure Mg,5.6×10^(-9)m s^(-1)for WE43B,and 1.5×10^(-9)m s^(-1)for EV31A.展开更多
基金YL wishes to thank The University of Queensland,the University of Science and Technology Beijing,and China Scholarship Council for their support during his study abroad year.
文摘This paper studied the stress corrosion cracking(SCC)of EV31A in 0.1 M Na 2 SO 4 saturated with Mg(OH)2 using linearly increasing stress tests,compared with pure Mg and WE43B.All three materials were susceptible to SCC.SCC susceptibility increased with decreasing applied stress rate.The threshold stress was 0.3×(yield stress)for pure Mg,0.6×(yield stress)for EV31A,and 0.8×(yield stress)for WE43B.The SCC velocities at an applied stress rate of 7.3×10^(-4)MPa s^(-1)were 7.2×10^(-8)m s^(−1)for pure Mg,5.6×10^(-9)m s^(-1)for WE43B,and 1.5×10^(-9)m s^(-1)for EV31A.