The dynamic responses of any floating platform arc dependent on the mass, stiffness and damping characteristics of the body as well as mooring system. Therefore, it is very essential to study the effect of individual ...The dynamic responses of any floating platform arc dependent on the mass, stiffness and damping characteristics of the body as well as mooring system. Therefore, it is very essential to study the effect of individual contributions to the system that can finally help to economise their cost. This paper focuses on the effect of mooring stiffness on the responses of a truss spar platform, obtained by different grouping of lines. The study is part of our present researches on mooring systems which include the effect of line pretension, diameter and azimuth angles. The platform is modelled as a rigid body with three degrees-of-freedom and its motions are analyzed in time-domain using the implicit Newmark Beta technique. The mooring lines restoring force-excursion relationship is evaluated using a quasi-static approach. It is observed that the mooring system with lines arranged in less number of groups exhibits better performance in terms of the restoring forces as well as mean position of platform. However, the dynamic motions of platform remain unaffected for different line groups.展开更多
The spatial matrix filter was designed and used for solving the problem to detect a weak target who was influenced by the strong nearby platform noise interference of the towed line array sonar. The MFP technology and...The spatial matrix filter was designed and used for solving the problem to detect a weak target who was influenced by the strong nearby platform noise interference of the towed line array sonar. The MFP technology and the DOA estimation technology were combined together by using the sound propagation characteristics of both target and interference. The spatial matrix filter with platform noise zero response constraint was designed by the near-field platform noise normal modes copy vectors and the far-field plane wave bearing vectors together. The optimal solution of the optimization problem for designing the spatial matrix filter was deduced directly, and it was simplified by the generalized singular value decomposition. The total response error to the plane wave bearing vectors and the total response to the platform noise copy vectors were given. The phenomena that strong interferences existed in the bearing course and blind areas existed after filtering were analyzed by the correlation between the plat- form noise copy vectors and the plane wave bearing vectors. It could be found from simulations that it has less blind area and higher detection ability by using the spatial matrix filtering technology.展开更多
文摘The dynamic responses of any floating platform arc dependent on the mass, stiffness and damping characteristics of the body as well as mooring system. Therefore, it is very essential to study the effect of individual contributions to the system that can finally help to economise their cost. This paper focuses on the effect of mooring stiffness on the responses of a truss spar platform, obtained by different grouping of lines. The study is part of our present researches on mooring systems which include the effect of line pretension, diameter and azimuth angles. The platform is modelled as a rigid body with three degrees-of-freedom and its motions are analyzed in time-domain using the implicit Newmark Beta technique. The mooring lines restoring force-excursion relationship is evaluated using a quasi-static approach. It is observed that the mooring system with lines arranged in less number of groups exhibits better performance in terms of the restoring forces as well as mean position of platform. However, the dynamic motions of platform remain unaffected for different line groups.
基金supported by the National Natural Science Foundation of China(60532040,11374001)
文摘The spatial matrix filter was designed and used for solving the problem to detect a weak target who was influenced by the strong nearby platform noise interference of the towed line array sonar. The MFP technology and the DOA estimation technology were combined together by using the sound propagation characteristics of both target and interference. The spatial matrix filter with platform noise zero response constraint was designed by the near-field platform noise normal modes copy vectors and the far-field plane wave bearing vectors together. The optimal solution of the optimization problem for designing the spatial matrix filter was deduced directly, and it was simplified by the generalized singular value decomposition. The total response error to the plane wave bearing vectors and the total response to the platform noise copy vectors were given. The phenomena that strong interferences existed in the bearing course and blind areas existed after filtering were analyzed by the correlation between the plat- form noise copy vectors and the plane wave bearing vectors. It could be found from simulations that it has less blind area and higher detection ability by using the spatial matrix filtering technology.