The mass transfer among the multiphase interactions among the steel, slag, lining refractory, and nonmetallic inclusions during the refining process of a bearing steel was studied using laboratory experiments and nume...The mass transfer among the multiphase interactions among the steel, slag, lining refractory, and nonmetallic inclusions during the refining process of a bearing steel was studied using laboratory experiments and numerical kinetic prediction. Experiments on the system with and without the slag phase were carried out to evaluate the influence of the refractory and the slag on the mass transfer. A mathematical model coupled the ion and molecule coexistence theory, coupled-reaction model, and the surface renewal theory was established to predict the dynamic mass transfer and composition transformation of the steel, the slag, and nonmetallic inclusions in the steel. During the refining process,Al_(2)O_(3) inclusions transformed into Mg O inclusions owing to the mass transfer of [Mg] at the steel/refractory interface and(Mg O) at the slag/refractory interface. Most of the aluminum involved in the transport entered the slag and a small part of the aluminum transferred to lining refractory, forming the Al_(2)O_(3) or Mg O·Al_(2)O_(3). The slag had a significant acceleration effect on the mass transfer. The mass transfer rate(or the reaction rate) of the system with the slag was approximately 5 times larger than that of the system without the slag. In the first 20 min of the refining, rates of magnesium mass transfer at the steel/inclusion interface, steel/refractory interface, and steel/slag interface were x, 1.1 x, and 2.2 x,respectively. The composition transformation of inclusions and the mass transfer of magnesium and aluminum in the steel were predicted with an acceptable accuracy using the established kinetic model.展开更多
A series of improvements in prolonging the AOD refractory lining life in Baosteel are introduced and analyzed in this paper,including modification of the AOD shell shape, adjustment of the top slag components and sele...A series of improvements in prolonging the AOD refractory lining life in Baosteel are introduced and analyzed in this paper,including modification of the AOD shell shape, adjustment of the top slag components and selection of the side-blowing tuyeres. Firstly,the layout of side-blow tuyeres was altered with the angle between each two tuyeres being 22.5° instead of the original 18° ,and the connection of the outside steel shell in the side-blow area was modified from the former platform shape with great stress concentration into a new smooth circle shape. Secondly,the slag components were changed from the former CaO-FeO-SiO: system to the CaO-MgO-SiO2 system. Besides, the basicity of the top slag was kept higher than 1.8 ,and the MgO content in the slag was kept within the range of 8% - 12%. Finally,tuyeres with an inner diameter 13% smaller than that of the original tuyeres were used. Based on these research and optimization work,the thermodynamics and kinetics in the AOD refining bath has been improved markedly, and the campaign of the AOD has been prolonged from 45 heats at the beginning of its start-up to the current 185 heats. Meanwhile,the yield of chromium alloy and the decarburization efficiency have also been improved.展开更多
YB/T 4194-2009 1 ScopeThis standard specifies the term and definition,classification,technical requirements,test methods,quality appraisal procedures,packing,marking,transportation,storage,
Modern cement rotary kiln is often large in size while rotating in high speed. Thermal condition within a rotary kiln is rather complex, exerting severe thermal and chemical attack on refractory of its kiln lining. In...Modern cement rotary kiln is often large in size while rotating in high speed. Thermal condition within a rotary kiln is rather complex, exerting severe thermal and chemical attack on refractory of its kiln lining. In the present paper, the cause that leads to refractory failure was analyzed; requirements for refractory to overcome such failure was discussed. Composites and properties of different refractories most often used as kiln lining were assessed, including magnesia - chrome bricks, magnesia spinel bricks, dolomite bricks, silicon carbide muUite bricks and castables etc. Recommendation was made for refractories with suitable composites and properties to be used as kiln lining in each specific zone to best counteract the severe thermal conditions. A cost-effective configura- tion was presented to assemble kiln lining for rotary kiln's different zones in line with the regulation at JC/ T 2196-2013 "Specifications of refractory for cement rotary kiln". Chromite-free refractories with property of high endurance to thermal attack and corrosion are required to be used in modern Pre-calcining cement rotary kilns.展开更多
Some variables that influence the slag splashing phenomenon in an oxygen steelmaking converter are numerically analyzed in this work. The effect of lance height, jet velocity, jet exit angle and slag viscosity on the ...Some variables that influence the slag splashing phenomenon in an oxygen steelmaking converter are numerically analyzed in this work. The effect of lance height, jet velocity, jet exit angle and slag viscosity on the washing and ejection mechanisms of slag splashing is studied employing transient two-dimensional computational fluid dynamics simulations. A parameter here called average slag volume fraction is proposed for the quantitative evaluation of the slag splashing efficiency. Besides, a qualitative comparison is made between the computational fluid dynamics results and physical model results from literature.展开更多
The microporous magnesia refractory shows a promising application prospect as tundish lining due to excellent thermal insulation and slag resistance.The effect of interaction between microporous magnesia castable and ...The microporous magnesia refractory shows a promising application prospect as tundish lining due to excellent thermal insulation and slag resistance.The effect of interaction between microporous magnesia castable and 38CrMoAl steel containing 0.876 wt.%Al on the cleanliness of 38CrMoAl steel was studied and compared with that of fused magnesia castable.The results show that the micropores in the microporous magnesia castable can promote the formation of dense and continuous MgO-Al_(2)O_(3)layer,which can inhibit the further pollution of molten steel by refractories,whereas the MgO-Al_(2)O_(3)layer formed in test of fused magnesia castable is not continuous.After 30 min holding,the total oxygen content in the steel samples for the test of microporous magnesia castable is only 42.2%of that for the test of fused magnesia castable.The inclusions in the steel samples for the test of microporous magnesia castable are also less than those for the test of fused magnesia castable.It shows that microporous magnesia castable is a promising tundish refractory for the preparation of clean high-Al steel.展开更多
基金financially supported by the National Natural Science Foundation China(Nos.U1860206,51725402,and 51874032)the Fundamental Research Funds for the Central Universities(Nos.FRF-TP-19-037A2Z and FRFBD-20-04A)+2 种基金the S&T Program of Hebei,China(No.20311006D)the High Steel Center(HSC)at Yanshan University,Chinathe High Quality Steel Consortium(HQSC)at University of Science and Technology Beijing,China。
文摘The mass transfer among the multiphase interactions among the steel, slag, lining refractory, and nonmetallic inclusions during the refining process of a bearing steel was studied using laboratory experiments and numerical kinetic prediction. Experiments on the system with and without the slag phase were carried out to evaluate the influence of the refractory and the slag on the mass transfer. A mathematical model coupled the ion and molecule coexistence theory, coupled-reaction model, and the surface renewal theory was established to predict the dynamic mass transfer and composition transformation of the steel, the slag, and nonmetallic inclusions in the steel. During the refining process,Al_(2)O_(3) inclusions transformed into Mg O inclusions owing to the mass transfer of [Mg] at the steel/refractory interface and(Mg O) at the slag/refractory interface. Most of the aluminum involved in the transport entered the slag and a small part of the aluminum transferred to lining refractory, forming the Al_(2)O_(3) or Mg O·Al_(2)O_(3). The slag had a significant acceleration effect on the mass transfer. The mass transfer rate(or the reaction rate) of the system with the slag was approximately 5 times larger than that of the system without the slag. In the first 20 min of the refining, rates of magnesium mass transfer at the steel/inclusion interface, steel/refractory interface, and steel/slag interface were x, 1.1 x, and 2.2 x,respectively. The composition transformation of inclusions and the mass transfer of magnesium and aluminum in the steel were predicted with an acceptable accuracy using the established kinetic model.
文摘A series of improvements in prolonging the AOD refractory lining life in Baosteel are introduced and analyzed in this paper,including modification of the AOD shell shape, adjustment of the top slag components and selection of the side-blowing tuyeres. Firstly,the layout of side-blow tuyeres was altered with the angle between each two tuyeres being 22.5° instead of the original 18° ,and the connection of the outside steel shell in the side-blow area was modified from the former platform shape with great stress concentration into a new smooth circle shape. Secondly,the slag components were changed from the former CaO-FeO-SiO: system to the CaO-MgO-SiO2 system. Besides, the basicity of the top slag was kept higher than 1.8 ,and the MgO content in the slag was kept within the range of 8% - 12%. Finally,tuyeres with an inner diameter 13% smaller than that of the original tuyeres were used. Based on these research and optimization work,the thermodynamics and kinetics in the AOD refining bath has been improved markedly, and the campaign of the AOD has been prolonged from 45 heats at the beginning of its start-up to the current 185 heats. Meanwhile,the yield of chromium alloy and the decarburization efficiency have also been improved.
文摘YB/T 4194-2009 1 ScopeThis standard specifies the term and definition,classification,technical requirements,test methods,quality appraisal procedures,packing,marking,transportation,storage,
文摘Modern cement rotary kiln is often large in size while rotating in high speed. Thermal condition within a rotary kiln is rather complex, exerting severe thermal and chemical attack on refractory of its kiln lining. In the present paper, the cause that leads to refractory failure was analyzed; requirements for refractory to overcome such failure was discussed. Composites and properties of different refractories most often used as kiln lining were assessed, including magnesia - chrome bricks, magnesia spinel bricks, dolomite bricks, silicon carbide muUite bricks and castables etc. Recommendation was made for refractories with suitable composites and properties to be used as kiln lining in each specific zone to best counteract the severe thermal conditions. A cost-effective configura- tion was presented to assemble kiln lining for rotary kiln's different zones in line with the regulation at JC/ T 2196-2013 "Specifications of refractory for cement rotary kiln". Chromite-free refractories with property of high endurance to thermal attack and corrosion are required to be used in modern Pre-calcining cement rotary kilns.
文摘Some variables that influence the slag splashing phenomenon in an oxygen steelmaking converter are numerically analyzed in this work. The effect of lance height, jet velocity, jet exit angle and slag viscosity on the washing and ejection mechanisms of slag splashing is studied employing transient two-dimensional computational fluid dynamics simulations. A parameter here called average slag volume fraction is proposed for the quantitative evaluation of the slag splashing efficiency. Besides, a qualitative comparison is made between the computational fluid dynamics results and physical model results from literature.
基金The authors gratefully acknowledge the support from National Natural Science Foundation of China(No.U1860205).
文摘The microporous magnesia refractory shows a promising application prospect as tundish lining due to excellent thermal insulation and slag resistance.The effect of interaction between microporous magnesia castable and 38CrMoAl steel containing 0.876 wt.%Al on the cleanliness of 38CrMoAl steel was studied and compared with that of fused magnesia castable.The results show that the micropores in the microporous magnesia castable can promote the formation of dense and continuous MgO-Al_(2)O_(3)layer,which can inhibit the further pollution of molten steel by refractories,whereas the MgO-Al_(2)O_(3)layer formed in test of fused magnesia castable is not continuous.After 30 min holding,the total oxygen content in the steel samples for the test of microporous magnesia castable is only 42.2%of that for the test of fused magnesia castable.The inclusions in the steel samples for the test of microporous magnesia castable are also less than those for the test of fused magnesia castable.It shows that microporous magnesia castable is a promising tundish refractory for the preparation of clean high-Al steel.