The commodity transportation capacity between all origin-destination ( OD ) pairs over the multimodal multi-commodities freight transportation network (MMFTN) is determined. A multi-ob- jectives mathematical model...The commodity transportation capacity between all origin-destination ( OD ) pairs over the multimodal multi-commodities freight transportation network (MMFTN) is determined. A multi-ob- jectives mathematical model is formulated for determining the OD capacity over the MMFTN accord- ing to a transporting capacity matrix that increased from the reference matrixes. The corresponding incremental factor for estimating the capacity matrix is obtained via the maximal likelihood estima- tion method that samples data of differences between the estimated commodity volumes and carrying capacities of the critical links. The proposed formulations are tested by an experimental highway and railroad freight transportation network in an existing literature. The relevant results of OD capacities are displayed and applicability of the algorithm is certified.展开更多
UAV data link has been considered as an important part of UAV communication system, through which the UAV could communicate with warships. However, constant coding and modulation scheme that UAV adopts does not make f...UAV data link has been considered as an important part of UAV communication system, through which the UAV could communicate with warships. However, constant coding and modulation scheme that UAV adopts does not make full use of the channel capacity when UAV communicates with warships in a good channel environment. In order to improve channel capacity and spectral efficiency, adaptive coded modulation technology is studied. Based on maritime channel model, SNR estimation technology and adaptive threshold determination technology, the simulation of UAV data link communication is carried out in this paper. Theoretic analysis and simulation results show that according to changes in maritime channel state, UAV can dynamically adjust the adaptive coded modulation scheme on the condition of meeting target Bit-Error-Rate (BER), the maximum amount of data transfer is non-adaptive systems three times.展开更多
A novel link adaptation scheme using linear Auto Regressive (AR) model channel estimation algorithm to enhance the performance of auto rate selection mechanism in IEEE 802.11g is proposed. This scheme can overcome t...A novel link adaptation scheme using linear Auto Regressive (AR) model channel estimation algorithm to enhance the performance of auto rate selection mechanism in IEEE 802.11g is proposed. This scheme can overcome the low efficiency caused by time interval between the time when Received Signal Strength (RSS) is measured and the time when rate is selected. The best rate is selected based on data payload length, frame retry count and the estimated RSS, which is estimated from recorded RSSs. Simulation results show that the proposed scheme enhances mean throughput performance up to 7%, in saturation state, and up to 24% in finite load state compared with those non-estimation schemes, performance enhancements in average drop rate and average number of transmission attempts per data frame delivery also validate the effectiveness of the proposed schelne.展开更多
To investigate the low-complex and high-precise tracking method, a novel single link tracking scheme based on UWB localization is proposed. Two antenna arrays are settled at the fixed station (FS) to receive the UWB...To investigate the low-complex and high-precise tracking method, a novel single link tracking scheme based on UWB localization is proposed. Two antenna arrays are settled at the fixed station (FS) to receive the UWB signal from mobile terminal (MT), one FS is enough for the proposed scheme to track the MT. The UWB multipath detection algorithm for time difference of arrival (TDOA) estimation is presented and TDOA is thus adopted to estimate angle of arrival (AOA), avoiding the synchronization and complicated beamforming for AOA. The impacts of localization errors, concluding multipath and non-line-of-sight (NLOS) errors are simulated for the proposed track scheme. It is demonstrated that the simulation curve can match the real target moving, and the feasibility of the proposed scheme is proved.展开更多
This paper proposes a chip correlation indicator (CCI)-based link quality estimation mechanism for wireless sensor networks under non-perceived packet loss. On the basis of analyzing all related factors, it can be c...This paper proposes a chip correlation indicator (CCI)-based link quality estimation mechanism for wireless sensor networks under non-perceived packet loss. On the basis of analyzing all related factors, it can be concluded that signal-to-noise rate (SNR) is the main factor causing the non-perceived packet loss. In this paper, the relationship model between CCI and non-perceived packet loss rate (NPLR) is established from related models such as SNR versus packet success rate (PSR), CCI versus SNR and CCI-NPLR. Due to the large fluctuating range of the raw CCI, Kalman filter is introduced to do de-noising of the raw CCI. The cubic model and the least squares method are employed to fit the relationship between CCI and SNR. In the experiments, many groups of comparison have been conducted and the results show that the proposed mechanism can achieve more accurate measurement of the non-perceived packet loss than existing approaches. Moreover, it has the advantage of decreasing extra energy consumption caused by sending large number of probe packets.展开更多
Wireless sensor networks are envisioned to be an integral part of cyber-physical systems, yet wireless networks are inherently dynamic and come with various uncertainties. One such uncertainty is wireless communicatio...Wireless sensor networks are envisioned to be an integral part of cyber-physical systems, yet wireless networks are inherently dynamic and come with various uncertainties. One such uncertainty is wireless communication itself which assumes complex spatial and temporal dynamics. For dependable and predictable performance, therefore, link estimation has become a basic element of wireless network routing. Several approaches using broadcast beacons and/or unicast MAC feedback have been proposed in the past years, but there is still no systematic characterization of the drawbacks and sources of errors in bea- con-based link estimation in low-power wireless networks, which leads to ad hoc usage of beacons in rout- ing. Using a testbed of 98 XSM motes (an enhanced version of MICA2 motes), we characterize the negative impact that link layer retransmission and traffic-induced interference have on the accuracy of beacon-based link estimation, and we show that data-driven link estimation and routing achieve higher event reliability (e.g. by up to 18.75%) and transmission efficiency (e.g., by up to a factor of 1.96) than beacon-based approaches These findings provide solid evidence for the necessity of data-driven link estimation and demonstrate the importance of addressing the drawbacks of beacon-based link estimation when designing protocols for low-power wireless networks of cyber-physical systems.展开更多
In the Fay–Herriot model,we consider estimators of the linking variance obtained using different types of resampling schemes.The usefulness of this approach is that even when the estimator from the original data fall...In the Fay–Herriot model,we consider estimators of the linking variance obtained using different types of resampling schemes.The usefulness of this approach is that even when the estimator from the original data falls below zero or any other specified threshold,several of the resamples can potentially yield values above the threshold.We establish asymptotic consistency of the resampling-based estimator of the linking variance for a wide variety of resampling schemes and show the efficacy of using the proposed approach in numeric examples.展开更多
文摘The commodity transportation capacity between all origin-destination ( OD ) pairs over the multimodal multi-commodities freight transportation network (MMFTN) is determined. A multi-ob- jectives mathematical model is formulated for determining the OD capacity over the MMFTN accord- ing to a transporting capacity matrix that increased from the reference matrixes. The corresponding incremental factor for estimating the capacity matrix is obtained via the maximal likelihood estima- tion method that samples data of differences between the estimated commodity volumes and carrying capacities of the critical links. The proposed formulations are tested by an experimental highway and railroad freight transportation network in an existing literature. The relevant results of OD capacities are displayed and applicability of the algorithm is certified.
文摘UAV data link has been considered as an important part of UAV communication system, through which the UAV could communicate with warships. However, constant coding and modulation scheme that UAV adopts does not make full use of the channel capacity when UAV communicates with warships in a good channel environment. In order to improve channel capacity and spectral efficiency, adaptive coded modulation technology is studied. Based on maritime channel model, SNR estimation technology and adaptive threshold determination technology, the simulation of UAV data link communication is carried out in this paper. Theoretic analysis and simulation results show that according to changes in maritime channel state, UAV can dynamically adjust the adaptive coded modulation scheme on the condition of meeting target Bit-Error-Rate (BER), the maximum amount of data transfer is non-adaptive systems three times.
基金Partly supported by the National Hi-Tech Research and Development Program of China (863 Program) (No.2003AA143040).
文摘A novel link adaptation scheme using linear Auto Regressive (AR) model channel estimation algorithm to enhance the performance of auto rate selection mechanism in IEEE 802.11g is proposed. This scheme can overcome the low efficiency caused by time interval between the time when Received Signal Strength (RSS) is measured and the time when rate is selected. The best rate is selected based on data payload length, frame retry count and the estimated RSS, which is estimated from recorded RSSs. Simulation results show that the proposed scheme enhances mean throughput performance up to 7%, in saturation state, and up to 24% in finite load state compared with those non-estimation schemes, performance enhancements in average drop rate and average number of transmission attempts per data frame delivery also validate the effectiveness of the proposed schelne.
基金supported by the National Natural Science Foundation of China (60572148 60702060)
文摘To investigate the low-complex and high-precise tracking method, a novel single link tracking scheme based on UWB localization is proposed. Two antenna arrays are settled at the fixed station (FS) to receive the UWB signal from mobile terminal (MT), one FS is enough for the proposed scheme to track the MT. The UWB multipath detection algorithm for time difference of arrival (TDOA) estimation is presented and TDOA is thus adopted to estimate angle of arrival (AOA), avoiding the synchronization and complicated beamforming for AOA. The impacts of localization errors, concluding multipath and non-line-of-sight (NLOS) errors are simulated for the proposed track scheme. It is demonstrated that the simulation curve can match the real target moving, and the feasibility of the proposed scheme is proved.
基金supported by the National Natural Science Foundation of China (61262020)Aeronautical Science Foundation of China (2010ZC56008)Nanchang Hangkong University Postgraduate Innovation Foundation (YC2011030)
文摘This paper proposes a chip correlation indicator (CCI)-based link quality estimation mechanism for wireless sensor networks under non-perceived packet loss. On the basis of analyzing all related factors, it can be concluded that signal-to-noise rate (SNR) is the main factor causing the non-perceived packet loss. In this paper, the relationship model between CCI and non-perceived packet loss rate (NPLR) is established from related models such as SNR versus packet success rate (PSR), CCI versus SNR and CCI-NPLR. Due to the large fluctuating range of the raw CCI, Kalman filter is introduced to do de-noising of the raw CCI. The cubic model and the least squares method are employed to fit the relationship between CCI and SNR. In the experiments, many groups of comparison have been conducted and the results show that the proposed mechanism can achieve more accurate measurement of the non-perceived packet loss than existing approaches. Moreover, it has the advantage of decreasing extra energy consumption caused by sending large number of probe packets.
文摘Wireless sensor networks are envisioned to be an integral part of cyber-physical systems, yet wireless networks are inherently dynamic and come with various uncertainties. One such uncertainty is wireless communication itself which assumes complex spatial and temporal dynamics. For dependable and predictable performance, therefore, link estimation has become a basic element of wireless network routing. Several approaches using broadcast beacons and/or unicast MAC feedback have been proposed in the past years, but there is still no systematic characterization of the drawbacks and sources of errors in bea- con-based link estimation in low-power wireless networks, which leads to ad hoc usage of beacons in rout- ing. Using a testbed of 98 XSM motes (an enhanced version of MICA2 motes), we characterize the negative impact that link layer retransmission and traffic-induced interference have on the accuracy of beacon-based link estimation, and we show that data-driven link estimation and routing achieve higher event reliability (e.g. by up to 18.75%) and transmission efficiency (e.g., by up to a factor of 1.96) than beacon-based approaches These findings provide solid evidence for the necessity of data-driven link estimation and demonstrate the importance of addressing the drawbacks of beacon-based link estimation when designing protocols for low-power wireless networks of cyber-physical systems.
基金This research is partially supported by the National Science Foundation(NSF)[grant numbers#DMS-1622483 and#DMS-1737918].
文摘In the Fay–Herriot model,we consider estimators of the linking variance obtained using different types of resampling schemes.The usefulness of this approach is that even when the estimator from the original data falls below zero or any other specified threshold,several of the resamples can potentially yield values above the threshold.We establish asymptotic consistency of the resampling-based estimator of the linking variance for a wide variety of resampling schemes and show the efficacy of using the proposed approach in numeric examples.