Backscatter communications will play an important role in connecting everything for beyond 5G(B5G)and 6G systems.One open challenge for backscatter communications is that the signals suffer a round-trip path loss so t...Backscatter communications will play an important role in connecting everything for beyond 5G(B5G)and 6G systems.One open challenge for backscatter communications is that the signals suffer a round-trip path loss so that the communication distance is short.In this paper,we first calculate the communication distance upper bounds for both uplink and downlink by measuring the tag sensitivity and reflection coefficient.It is found that the activation voltage of the envelope detection diode of the downlink tag is the main factor limiting the back-scatter communication distance.Based on this analysis,we then propose to implement a low-noise amplifier(LNA)module before the envelope detection at the tag to enhance the incident signal strength.Our experimental results on the hardware platform show that our method can increase the downlink communication range by nearly 20 m.展开更多
The FuTURE 4G Time Division Duplex (TDD) trial system uses 3.5 GHz carrier frequency and several crucial technologies including broadband Multiple Input Multiple Output (MIMO) and Orthogonal Frequency Division Multipl...The FuTURE 4G Time Division Duplex (TDD) trial system uses 3.5 GHz carrier frequency and several crucial technologies including broadband Multiple Input Multiple Output (MIMO) and Orthogonal Frequency Division Multiplexing (OFDM). These technologies challenge the link budget and networking analysis of the FuTURE 4G TDD trial network. This paper analyzes the practical 3.5 GHz propagation model and the link budget of Radio Frequency (RF) parameters of the trial system. Moreover,it introduces networking analysis and network planning of the trial system,which combines the field test results of the MIMO system. The FuTURE 4G TDD trial system and its trial network have been accomplished with successful checkup. The trial system fulfills all the requirements with two Access Points (AP) and three Mobile Terminals (MT),which supports multi-user,mobility,a high peak rate of 100 Mb/s,High-Definition TV (HDTV),high-speed data download,and Voice over IP (VoIP) services.展开更多
Line-of-sight (LOS) link planning condition has been observed to have effects on the atmospheric factor which cause crucial signal loss. The main objective of the planning was to improve a set of a link using point to...Line-of-sight (LOS) link planning condition has been observed to have effects on the atmospheric factor which cause crucial signal loss. The main objective of the planning was to improve a set of a link using point to point condition to assist the performance in emerging its strategy for handling the fixed WLAN service. The purpose of this paper is to provide a quick description of various propagation loss mechanisms on Link Budget Tool (LBT). LBT is customized to create point to point link for local area network (LAN) through radio frequency range operating between 2.400 GHz and 5.800 GHz. This software is able to define the effect of signal loss and expected performances according to the distances between link propagation conditions based on a number of system parameters.展开更多
Communications capability can be a significant constraint on the utility of a spacecraft. While conventionally enhanced through the use of a larger transmitting or receiving antenna or through augmenting transmission ...Communications capability can be a significant constraint on the utility of a spacecraft. While conventionally enhanced through the use of a larger transmitting or receiving antenna or through augmenting transmission power, communications capability can also be enhanced via incorporating more data in every unit of transmission. Model Based Transmission Reduction (MBTR) increases the mission utility of spacecraft via sending higher-level messages which rely on preshared (or, in some cases, co-transmitted) data. Because of this a priori knowledge, the amount of information contained in a MBTR message significantly exceeds the amount the amount of information in a conventional message. MBTR has multiple levels of operation;the lowest, Model Based Data Transmission (MBDT), utilizes a pre-shared lower-resolution data frame, which is augmented in areas of significant discrepancy with data from the higher-resolution source. MBDT is examined, in detail, herein and several approaches to minimizing the required bandwidth for conveying data required to conform to a minimum level of accuracy are considered. Also considered are ways of minimizing transmission requirements when both a model and change data required to attain a desired minimum discrepancy threshold must be transmitted. These possible solutions are compared to alternate transmission techniques including several forms of image compression.展开更多
Broadband satellite communications can enable a plethora of applications in customer services, global nomadic coverage and disaster prediction and recovery. Terahertz(THz) band is envisioned as a key satellite communi...Broadband satellite communications can enable a plethora of applications in customer services, global nomadic coverage and disaster prediction and recovery. Terahertz(THz) band is envisioned as a key satellite communication technology due to its very broad bandwidth, astrophysical observation advantages and device maturing in recent years. In this paper, a massive-antenna-array-enabled THz satellite communication system is proposed to be established in Tanggula, Tibet, where the average altitude is 5.068 km and the mean-clear-sky precipitable water vapor(PWV) is as low as 1.31 mm. In particular, a link budget analysis(LBA) framework is developed for THz space communications, considering unique THz channel properties and massive antenna array techniques. Moreover, practical siting conditions are taken into account, including the altitude, PWV, THz spectral windows, rain and cloud factors. On the basis of the developed link budget model, the massive antenna array model, and the practical parameters in Tanggula, the performances of signal-to-noise ratio(SNR) and capacity are evaluated. The results illustrate that 1 Tbit/s is attainable in the 0.275~0.37 THz spectral window in Tanggula, by using an antenna array of the size 64.展开更多
基金supported in part by National Natural Science Foundation of China under Grant Nos.61971029 and U22B2004in part by Beijing Municipal Natural Science Foundation under Grant No.L222002.
文摘Backscatter communications will play an important role in connecting everything for beyond 5G(B5G)and 6G systems.One open challenge for backscatter communications is that the signals suffer a round-trip path loss so that the communication distance is short.In this paper,we first calculate the communication distance upper bounds for both uplink and downlink by measuring the tag sensitivity and reflection coefficient.It is found that the activation voltage of the envelope detection diode of the downlink tag is the main factor limiting the back-scatter communication distance.Based on this analysis,we then propose to implement a low-noise amplifier(LNA)module before the envelope detection at the tag to enhance the incident signal strength.Our experimental results on the hardware platform show that our method can increase the downlink communication range by nearly 20 m.
基金the National Natural Science Foundation of China under Grant 60496312the 863 Program of China under Grants 2003AA12331004 and 2006AA01Z260.
文摘The FuTURE 4G Time Division Duplex (TDD) trial system uses 3.5 GHz carrier frequency and several crucial technologies including broadband Multiple Input Multiple Output (MIMO) and Orthogonal Frequency Division Multiplexing (OFDM). These technologies challenge the link budget and networking analysis of the FuTURE 4G TDD trial network. This paper analyzes the practical 3.5 GHz propagation model and the link budget of Radio Frequency (RF) parameters of the trial system. Moreover,it introduces networking analysis and network planning of the trial system,which combines the field test results of the MIMO system. The FuTURE 4G TDD trial system and its trial network have been accomplished with successful checkup. The trial system fulfills all the requirements with two Access Points (AP) and three Mobile Terminals (MT),which supports multi-user,mobility,a high peak rate of 100 Mb/s,High-Definition TV (HDTV),high-speed data download,and Voice over IP (VoIP) services.
文摘Line-of-sight (LOS) link planning condition has been observed to have effects on the atmospheric factor which cause crucial signal loss. The main objective of the planning was to improve a set of a link using point to point condition to assist the performance in emerging its strategy for handling the fixed WLAN service. The purpose of this paper is to provide a quick description of various propagation loss mechanisms on Link Budget Tool (LBT). LBT is customized to create point to point link for local area network (LAN) through radio frequency range operating between 2.400 GHz and 5.800 GHz. This software is able to define the effect of signal loss and expected performances according to the distances between link propagation conditions based on a number of system parameters.
文摘Communications capability can be a significant constraint on the utility of a spacecraft. While conventionally enhanced through the use of a larger transmitting or receiving antenna or through augmenting transmission power, communications capability can also be enhanced via incorporating more data in every unit of transmission. Model Based Transmission Reduction (MBTR) increases the mission utility of spacecraft via sending higher-level messages which rely on preshared (or, in some cases, co-transmitted) data. Because of this a priori knowledge, the amount of information contained in a MBTR message significantly exceeds the amount the amount of information in a conventional message. MBTR has multiple levels of operation;the lowest, Model Based Data Transmission (MBDT), utilizes a pre-shared lower-resolution data frame, which is augmented in areas of significant discrepancy with data from the higher-resolution source. MBDT is examined, in detail, herein and several approaches to minimizing the required bandwidth for conveying data required to conform to a minimum level of accuracy are considered. Also considered are ways of minimizing transmission requirements when both a model and change data required to attain a desired minimum discrepancy threshold must be transmitted. These possible solutions are compared to alternate transmission techniques including several forms of image compression.
基金the National Natural Science Foundation of China(No.61701300)the Shanghai Sailing(YANG FAN)Program(No.17YF1409900)HAN Chong’s"Chenguang Program"Supported by Shanghai Education Development Foundation and Shanghai Municipal Education Commission
文摘Broadband satellite communications can enable a plethora of applications in customer services, global nomadic coverage and disaster prediction and recovery. Terahertz(THz) band is envisioned as a key satellite communication technology due to its very broad bandwidth, astrophysical observation advantages and device maturing in recent years. In this paper, a massive-antenna-array-enabled THz satellite communication system is proposed to be established in Tanggula, Tibet, where the average altitude is 5.068 km and the mean-clear-sky precipitable water vapor(PWV) is as low as 1.31 mm. In particular, a link budget analysis(LBA) framework is developed for THz space communications, considering unique THz channel properties and massive antenna array techniques. Moreover, practical siting conditions are taken into account, including the altitude, PWV, THz spectral windows, rain and cloud factors. On the basis of the developed link budget model, the massive antenna array model, and the practical parameters in Tanggula, the performances of signal-to-noise ratio(SNR) and capacity are evaluated. The results illustrate that 1 Tbit/s is attainable in the 0.275~0.37 THz spectral window in Tanggula, by using an antenna array of the size 64.