Effective link analysis techniques are needed to help law enforcement and intelligence agencies fight money laundering. This paper presents a link analysis technique that uses a modified shortest-path algorithms to id...Effective link analysis techniques are needed to help law enforcement and intelligence agencies fight money laundering. This paper presents a link analysis technique that uses a modified shortest-path algorithms to identify the strongest association paths between entities in a money laundering network. Based on two-tree Dijkstra and Priority'First-Search (PFS) algorithm, a modified algorithm is presented. To apply the algorithm, a network representation transformation is made first.展开更多
This paper is devoted to find an intelligent and safe path for two-link robotic arm in dynamic environment. This paper focuses on computational part of motion planning in completely changing dynamic environment at eve...This paper is devoted to find an intelligent and safe path for two-link robotic arm in dynamic environment. This paper focuses on computational part of motion planning in completely changing dynamic environment at every motion sample domains,?since the local minima and sharp edges are the most common problems in all path planning algorithms. In addition, finding a path solution in a dynamic environment represents a challenge for the robotics researchers,?so in this paper, a proposed mixing approach was suggested to overcome all these obstructions. The proposed approach methodology?for obtaining robot interactive path planning solution in known dynamic environment utilizes?the use of modified heuristic D-star (D*) algorithm based on the full free Cartesian space analysis at each motion sample with the Particle Swarm Optimization (PSO) technique.?Also, a modification on the?D* algorithm has been done to match the dynamic environment requirements by adding stop and return backward cases which is not included in the original D* algorithm theory. The resultant interactive path solution was computed by taking into consideration the time and position changes of the moving obstacles. Furthermore, to insure the enhancement of the?final path length optimality, the PSO technique was used.?The simulation results are given to show the effectiveness of the proposed method.展开更多
Missing link prediction provides significant instruction for both analysis of network structure and mining of unknown links in incomplete networks. Recently, many algorithms have been proposed based on various node-si...Missing link prediction provides significant instruction for both analysis of network structure and mining of unknown links in incomplete networks. Recently, many algorithms have been proposed based on various node-similarity measures. Among these measures, the common neighbour index, the resource allocation index, and the local path index, stemming from different source, have been proved to have relatively high accuracy and low computational effort. In this paper, we propose a similarity index by combining the resource allocation index and the local path index. Simulation results on six unweighted networks show that the accuracy of the proposed index is higher than that of the local path one. Based on the same idea of the present index, we develop its corresponding weighted version and test it on several weighted networks. It is found that, except for the USAir network, the weighted variant also performs better than both the weighted resource allocation index and the weighted local path index. Due to the improved accuracy and the still low computational complexity, the indices may be useful for link prediction.展开更多
In conventional shared risk link group (SRLG)-diverse path selection (CSPS) algorithm in survivable GMPLS networks, SRLG is taken into account when selecting the backup paths, while the primary path selection meth...In conventional shared risk link group (SRLG)-diverse path selection (CSPS) algorithm in survivable GMPLS networks, SRLG is taken into account when selecting the backup paths, while the primary path selection method is the sarne as the algorithms without SRLG constraint. A problem of CSPS algorithm is that, after a primary path is selected, the success probability to select an SRLG-diverse backup path for it is low. If SRLG is taken into account when computing the primary path, then the probability to successfully select an SRLG-diverse backup path will be much increased. Based on this idea, an active SRLG-diverse path selection (ASPS) algorithm is proposed. To actively avoid selecting those SRLG links, when computing the primary path, a link that share risk with more links is assigned a larger link cost. To improve the resource utilization ratio, it is permitted that the bandwidth resources are shared among backup paths. What is more, differentiated reliability (DiR) requirements of different customers are considered in ASPS algorithm. The simulation results show that, compared with CSPS algorithm, ASPS algorithm not only increases successful protection probability but also improves resource utilization ratio.展开更多
Line-of-sight (LOS) link planning condition has been observed to have effects on the atmospheric factor which cause crucial signal loss. The main objective of the planning was to improve a set of a link using point to...Line-of-sight (LOS) link planning condition has been observed to have effects on the atmospheric factor which cause crucial signal loss. The main objective of the planning was to improve a set of a link using point to point condition to assist the performance in emerging its strategy for handling the fixed WLAN service. The purpose of this paper is to provide a quick description of various propagation loss mechanisms on Link Budget Tool (LBT). LBT is customized to create point to point link for local area network (LAN) through radio frequency range operating between 2.400 GHz and 5.800 GHz. This software is able to define the effect of signal loss and expected performances according to the distances between link propagation conditions based on a number of system parameters.展开更多
基金Supported bythe National Tenth Five-Year PlanforScientific and Technological Development of China (2001BA102A06-11)
文摘Effective link analysis techniques are needed to help law enforcement and intelligence agencies fight money laundering. This paper presents a link analysis technique that uses a modified shortest-path algorithms to identify the strongest association paths between entities in a money laundering network. Based on two-tree Dijkstra and Priority'First-Search (PFS) algorithm, a modified algorithm is presented. To apply the algorithm, a network representation transformation is made first.
文摘This paper is devoted to find an intelligent and safe path for two-link robotic arm in dynamic environment. This paper focuses on computational part of motion planning in completely changing dynamic environment at every motion sample domains,?since the local minima and sharp edges are the most common problems in all path planning algorithms. In addition, finding a path solution in a dynamic environment represents a challenge for the robotics researchers,?so in this paper, a proposed mixing approach was suggested to overcome all these obstructions. The proposed approach methodology?for obtaining robot interactive path planning solution in known dynamic environment utilizes?the use of modified heuristic D-star (D*) algorithm based on the full free Cartesian space analysis at each motion sample with the Particle Swarm Optimization (PSO) technique.?Also, a modification on the?D* algorithm has been done to match the dynamic environment requirements by adding stop and return backward cases which is not included in the original D* algorithm theory. The resultant interactive path solution was computed by taking into consideration the time and position changes of the moving obstacles. Furthermore, to insure the enhancement of the?final path length optimality, the PSO technique was used.?The simulation results are given to show the effectiveness of the proposed method.
基金Project supported by the National Natural Science Foundation of China (Grant No. 30570432)the Young Research Foundation of Education Department of Hunan Province of China (Grant No. 11B128)partly by the Doctor Startup Project of Xiangtan University (Grant No. 10QDZ20)
文摘Missing link prediction provides significant instruction for both analysis of network structure and mining of unknown links in incomplete networks. Recently, many algorithms have been proposed based on various node-similarity measures. Among these measures, the common neighbour index, the resource allocation index, and the local path index, stemming from different source, have been proved to have relatively high accuracy and low computational effort. In this paper, we propose a similarity index by combining the resource allocation index and the local path index. Simulation results on six unweighted networks show that the accuracy of the proposed index is higher than that of the local path one. Based on the same idea of the present index, we develop its corresponding weighted version and test it on several weighted networks. It is found that, except for the USAir network, the weighted variant also performs better than both the weighted resource allocation index and the weighted local path index. Due to the improved accuracy and the still low computational complexity, the indices may be useful for link prediction.
基金supported by the National Natural Science Foundation of China (60673142)Applied Basic ResearchProject of Sichuan Province (2006J13-067).
文摘In conventional shared risk link group (SRLG)-diverse path selection (CSPS) algorithm in survivable GMPLS networks, SRLG is taken into account when selecting the backup paths, while the primary path selection method is the sarne as the algorithms without SRLG constraint. A problem of CSPS algorithm is that, after a primary path is selected, the success probability to select an SRLG-diverse backup path for it is low. If SRLG is taken into account when computing the primary path, then the probability to successfully select an SRLG-diverse backup path will be much increased. Based on this idea, an active SRLG-diverse path selection (ASPS) algorithm is proposed. To actively avoid selecting those SRLG links, when computing the primary path, a link that share risk with more links is assigned a larger link cost. To improve the resource utilization ratio, it is permitted that the bandwidth resources are shared among backup paths. What is more, differentiated reliability (DiR) requirements of different customers are considered in ASPS algorithm. The simulation results show that, compared with CSPS algorithm, ASPS algorithm not only increases successful protection probability but also improves resource utilization ratio.
文摘Line-of-sight (LOS) link planning condition has been observed to have effects on the atmospheric factor which cause crucial signal loss. The main objective of the planning was to improve a set of a link using point to point condition to assist the performance in emerging its strategy for handling the fixed WLAN service. The purpose of this paper is to provide a quick description of various propagation loss mechanisms on Link Budget Tool (LBT). LBT is customized to create point to point link for local area network (LAN) through radio frequency range operating between 2.400 GHz and 5.800 GHz. This software is able to define the effect of signal loss and expected performances according to the distances between link propagation conditions based on a number of system parameters.