Exploring local community structure is an appealing problem that has drawn much recent attention in the area of social network analysis. As the complete information of network is often difficult to obtain, such as net...Exploring local community structure is an appealing problem that has drawn much recent attention in the area of social network analysis. As the complete information of network is often difficult to obtain, such as networks of web pages, research papers and Facebook users, people can only detect community structure from a certain source vertex with limited knowledge of the entire graph. The existing approaches do well in measuring the community quality, but they are largely dependent on source vertex and putting too strict policy in agglomerating new vertices. Moreover, they have predefined parameters which are difficult to obtain. This paper proposes a method to find local community structure by analyzing link similarity between the community and the vertex. Inspired by the fact that elements in the same community are more likely to share common links, we explore community structure heuristically by giving priority to vertices which have a high link similarity with the community. A three-phase process is also used for the sake of improving quality of community structure. Experimental results prove that our method performs effectively not only in computer-generated graphs but also in real-world graphs.展开更多
With the development of the social media and Internet, discovering latent information from massive information is becoming particularly relevant to improving user experience. Research efforts based on preferences and ...With the development of the social media and Internet, discovering latent information from massive information is becoming particularly relevant to improving user experience. Research efforts based on preferences and relationships between users have attracted more and more attention. Predictive problems, such as inferring friend relationship and co-author relationship between users have been explored. However, many such methods are based on analyzing either node features or the network structures separately, few have tried to tackle both of them at the same time. In this paper, in order to discover latent co-interests' relationship, we not only consider users' attributes but network information as well. In addition, we propose an Interest-based Factor Graph Model (I-FGM) to incorporate these factors. Experiments on two data sets (bookmarking and music network) demonstrate that this predictive method can achieve better results than the other three methods (ANN, NB, and SVM).展开更多
基金supported by the National Natural Science Foundation of China under Grant No.61170193the Doctoral Program of the Ministry of Education of China under Grant No.20090172120035+2 种基金the Natural Science Foundation of Guangdong Province of China under Grant No.S2012010010613the Fundamental Research Funds for the Central Universities of South China University of Technology of China under Grant No.2012ZM0087the Pearl River Science & Technology Start Project of China under Grant No. 2012J2200007
文摘Exploring local community structure is an appealing problem that has drawn much recent attention in the area of social network analysis. As the complete information of network is often difficult to obtain, such as networks of web pages, research papers and Facebook users, people can only detect community structure from a certain source vertex with limited knowledge of the entire graph. The existing approaches do well in measuring the community quality, but they are largely dependent on source vertex and putting too strict policy in agglomerating new vertices. Moreover, they have predefined parameters which are difficult to obtain. This paper proposes a method to find local community structure by analyzing link similarity between the community and the vertex. Inspired by the fact that elements in the same community are more likely to share common links, we explore community structure heuristically by giving priority to vertices which have a high link similarity with the community. A three-phase process is also used for the sake of improving quality of community structure. Experimental results prove that our method performs effectively not only in computer-generated graphs but also in real-world graphs.
基金the National Natural Science Foundation of China (No. 61170192)the Natural Science Foundations of Municipality of Chongqing(No. CSTC2012JJB40012)
文摘With the development of the social media and Internet, discovering latent information from massive information is becoming particularly relevant to improving user experience. Research efforts based on preferences and relationships between users have attracted more and more attention. Predictive problems, such as inferring friend relationship and co-author relationship between users have been explored. However, many such methods are based on analyzing either node features or the network structures separately, few have tried to tackle both of them at the same time. In this paper, in order to discover latent co-interests' relationship, we not only consider users' attributes but network information as well. In addition, we propose an Interest-based Factor Graph Model (I-FGM) to incorporate these factors. Experiments on two data sets (bookmarking and music network) demonstrate that this predictive method can achieve better results than the other three methods (ANN, NB, and SVM).