期刊文献+
共找到8,329篇文章
< 1 2 250 >
每页显示 20 50 100
Astrocytic endothelin-1 overexpression impairs learning and memory ability in ischemic stroke via altered hippocampal neurogenesis and lipid metabolism 被引量:5
1
作者 Jie Li Wen Jiang +9 位作者 Yuefang Cai Zhenqiu Ning Yingying Zhou Chengyi Wang Sookja Ki Chung Yan Huang Jingbo Sun Minzhen Deng Lihua Zhou Xiao Cheng 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第3期650-656,共7页
Vascular etiology is the second most prevalent cause of cognitive impairment globally.Endothelin-1,which is produced and secreted by endothelial cells and astrocytes,is implicated in the pathogenesis of stroke.However... Vascular etiology is the second most prevalent cause of cognitive impairment globally.Endothelin-1,which is produced and secreted by endothelial cells and astrocytes,is implicated in the pathogenesis of stroke.However,the way in which changes in astrocytic endothelin-1 lead to poststroke cognitive deficits following transient middle cerebral artery occlusion is not well understood.Here,using mice in which astrocytic endothelin-1 was overexpressed,we found that the selective overexpression of endothelin-1 by astrocytic cells led to ischemic stroke-related dementia(1 hour of ischemia;7 days,28 days,or 3 months of reperfusion).We also revealed that astrocytic endothelin-1 overexpression contributed to the role of neural stem cell proliferation but impaired neurogenesis in the dentate gyrus of the hippocampus after middle cerebral artery occlusion.Comprehensive proteome profiles and western blot analysis confirmed that levels of glial fibrillary acidic protein and peroxiredoxin 6,which were differentially expressed in the brain,were significantly increased in mice with astrocytic endothelin-1 overexpression in comparison with wild-type mice 28 days after ischemic stroke.Moreover,the levels of the enriched differentially expressed proteins were closely related to lipid metabolism,as indicated by Kyoto Encyclopedia of Genes and Genomes pathway analysis.Liquid chromatography-mass spectrometry nontargeted metabolite profiling of brain tissues showed that astrocytic endothelin-1 overexpression altered lipid metabolism products such as glycerol phosphatidylcholine,sphingomyelin,and phosphatidic acid.Overall,this study demonstrates that astrocytic endothelin-1 overexpression can impair hippocampal neurogenesis and that it is correlated with lipid metabolism in poststroke cognitive dysfunction. 展开更多
关键词 astrocytic endothelin-1 dentate gyrus differentially expressed proteins HIPPOCAMPUS ischemic stroke learning and memory deficits lipid metabolism neural stem cells NEUROGENESIS proliferation
下载PDF
Lipid metabolism analysis in esophageal cancer and associated drug discovery 被引量:2
2
作者 Ruidi Jiao Wei Jiang +3 位作者 Kunpeng Xu Qian Luo Luhua Wang Chao Zhao 《Journal of Pharmaceutical Analysis》 SCIE CAS CSCD 2024年第1期1-15,共15页
Esophageal cancer is an upper gastrointestinal malignancy with a bleak prognosis.It is still being explored in depth due to its complex molecular mechanisms of occurrence and development.Lipids play a crucial role in ... Esophageal cancer is an upper gastrointestinal malignancy with a bleak prognosis.It is still being explored in depth due to its complex molecular mechanisms of occurrence and development.Lipids play a crucial role in cells by participating in energy supply,biofilm formation,and signal transduction processes,and lipid metabolic reprogramming also constitutes a significant characteristic of malignant tumors.More and more studies have found esophageal cancer has obvious lipid metabolism abnormalities throughout its beginning,progress,and treatment resistance.The inhibition of tumor growth and the enhancement of antitumor therapy efficacy can be achieved through the regulation of lipid metabolism.Therefore,we reviewed and analyzed the research results and latest findings for lipid metabolism and associated analysis techniques in esophageal cancer,and comprehensively proved the value of lipid metabolic reprogramming in the evolution and treatment resistance of esophageal cancer,as well as its significance in exploring potential therapeutic targets and biomarkers. 展开更多
关键词 lipid metabolism Esophageal cancer PROGRESSION Treatment resistance New therapeutic targets
下载PDF
Lipid metabolism-related long noncoding RNA RP11-817I4.1 promotes fatty acid synthesis and tumor progression in hepatocellular carcinoma 被引量:1
3
作者 Ren-Yong Wang Jia-Ling Yang +5 位作者 Ning Xu Jia Xu Shao-Hua Yang Dao-Ming Liang Jin-Ze Li Hong Zhu 《World Journal of Gastroenterology》 SCIE CAS 2024年第8期919-942,共24页
BACKGROUND Hepatocellular carcinoma(HCC)is one of the most common types of tumors.The influence of lipid metabolism disruption on the development of HCC has been demonstrated in published studies.AIM To establish an H... BACKGROUND Hepatocellular carcinoma(HCC)is one of the most common types of tumors.The influence of lipid metabolism disruption on the development of HCC has been demonstrated in published studies.AIM To establish an HCC prognostic model for lipid metabolism-related long non-coding RNAs(LMR-lncRNAs)and conduct in-depth research on the specific role of novel LMR-lncRNAs in HCC.METHODS Correlation and differential expression analyses of The Cancer Genome Atlas data were used to identify differentially expressed LMR-lncRNAs.Quantitative real-time polymerase chain reaction analysis was used to evaluate the expression of LMR-lncRNAs.Nile red staining was employed to observe intracellular lipid levels.The interaction between RP11-817I4.1,miR-3120-3p,and ATP citrate lyase(ACLY)was validated through the performance of dual-luciferase reporter gene and RIP assays.RESULTS Three LMR-lncRNAs(negative regulator of antiviral response,RNA transmembrane and coiled-coil domain family 1 antisense RNA 1,and RP11-817I4.1)were identified as predictive markers for HCC patients and were utilized in the construction of risk models.Additionally,proliferation,migration,and invasion were reduced by RP11-817I4.1 knockdown.An increase in lipid levels in HCC cells was significantly induced by RP11-817I4.1 through the miR-3120-3p/ACLY axis.CONCLUSION LMR-lncRNAs have the capacity to predict the clinical characteristics and prognoses of HCC patients,and the discovery of a novel LMR-lncRNAs,RP11-817I4.1,revealed its role in promoting lipid accumulation,thereby accelerating the onset and progression of HCC. 展开更多
关键词 Hepatocellular carcinoma lipid metabolism Immune microenvironment Prognostic markers Metabolic reprogramming
下载PDF
RARRES2's impact on lipid metabolism in triplenegative breast cancer:a pathway to brain metastasis 被引量:1
4
作者 Quazi T.H.Shubhra 《Military Medical Research》 SCIE CAS CSCD 2024年第2期311-312,共2页
Breast cancer brain metastasis(BCBrM)is a crucial and hard area of research which guarantees an urgent need to understand the underlying molecular mechanisms.A recent study by Li et al.[1]published in Military Medical... Breast cancer brain metastasis(BCBrM)is a crucial and hard area of research which guarantees an urgent need to understand the underlying molecular mechanisms.A recent study by Li et al.[1]published in Military Medical Research investigated the role of retinoic acid receptor responder 2(RARRES2)in regulating lipid metabolism in BCBrM,highlighting the clinical relevance of alterations in lipid metabolites,such as phosphatidylcholine(PC)and triacylglycerols(TAGs),by RARRES2 through the modulation of phosphatase and tensin homologue(PTEN)-mammalian target of rapamycin(mTOR)-sterol regulatory element-binding protein 1(SREBP1)signaling pathway.This commentary aims to elaborate on the key findings and their relevance to the field. 展开更多
关键词 Retinoic acid receptor responder 2(RARRES2) lipid metabolism Cancer PTEN-mTOR-SREBP1 signaling Metabolic reprogramming Brain metastasis
下载PDF
ACSL3 regulates breast cancer progression via lipid metabolism reprogramming and the YES1/YAP axis
5
作者 Shirong Tan Xiangyu Sun +5 位作者 Haoran Dong Mozhi Wang Litong Yao Mengshen Wang Ling Xu Yingying Xu 《Cancer Biology & Medicine》 SCIE CAS CSCD 2024年第7期606-635,共30页
Objective:Mitochondrial fatty acid oxidation is a metabolic pathway whose dysregulation is recognized as a critical factor in various cancers,because it sustains cancer cell survival,proliferation,and metastasis.The a... Objective:Mitochondrial fatty acid oxidation is a metabolic pathway whose dysregulation is recognized as a critical factor in various cancers,because it sustains cancer cell survival,proliferation,and metastasis.The acyl-Co A synthetase long-chain(ACSL)family is known to activate long-chain fatty acids,yet the specific role of ACSL3 in breast cancer has not been determined.Methods:We assessed the prognostic value of ACSL3 in breast cancer by using data from tumor samples.Gain-of-function and lossof-function assays were also conducted to determine the roles and downstream regulatory mechanisms of ACSL3 in vitro and in vivo.Results:ACSL3 expression was notably downregulated in breast cancer tissues compared with normal tissues,and this phenotype correlated with improved survival outcomes.Functional experiments revealed that ACSL3 knockdown in breast cancer cells promoted cell proliferation,migration,and epithelial±mesenchymal transition.Mechanistically,ACSL3 was found to inhibitβ-oxidation and the formation of associated byproducts,thereby suppressing malignant behavior in breast cancer.Importantly,ACSL3 was found to interact with YES proto-oncogene 1,a member of the Src family of tyrosine kinases,and to suppress its activation through phosphorylation at Tyr419.The decrease in activated YES1 consequently inhibited YAP1 nuclear colocalization and transcriptional complex formation,and the expression of its downstream genes in breast cancer cell nuclei.Conclusions:ACSL3 suppresses breast cancer progression by impeding lipid metabolism reprogramming,and inhibiting malignant behaviors through phospho-YES1 mediated inhibition of YAP1 and its downstream pathways.These findings suggest that ACSL3 may serve as a potential biomarker and target for comprehensive therapeutic strategies for breast cancer. 展开更多
关键词 Breast cancer lipid metabolism ACSL3 YAP METASTASIS
下载PDF
Insights into the interplay between gut microbiota and lipid metabolism in the obesity management of canines and felines
6
作者 Kaiqi Li Xiangyu Xiao +8 位作者 Yuling Li Sichen Lu Jianghang Zi Xiaoqiang Sun Jia Xu Hao‑Yu Liu Xiaoqiong Li Tongxing Song Demin Cai 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2024年第5期1761-1777,共17页
Obesity is a prevalent chronic disease that has significant negative impacts on humans and our companion animals,including dogs and cats.Obesity occurs with multiple comorbidities,such as diabetes,hypertension,heart d... Obesity is a prevalent chronic disease that has significant negative impacts on humans and our companion animals,including dogs and cats.Obesity occurs with multiple comorbidities,such as diabetes,hypertension,heart disease and osteoarthritis in dogs and cats.A direct link between lipid metabolism dysregulation and obesity-associated diseases has been implicated.However,the understanding of such pathophysiology in companion animals is lim-ited.This review aims to address the role of lipid metabolism in various metabolic disorders associated with obesity,emphasizing the involvement of the gut microbiota.Furthermore,we also discuss the management of obesity,including approaches like nutritional interventions,thus providing novel insights into obesity prevention and treatment for canines and felines. 展开更多
关键词 CAT DOG Gut microbiota lipid metabolism Obesity Management
下载PDF
Effects of Poria cocos polysaccharide on growth performance,physiological parameters,and lipid metabolism of spotted sea bass Lateolabrax maculatus
7
作者 Jing LU Zhangfan HUANG +2 位作者 Youling YE Anle XU Zhongbao LI 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2024年第1期316-331,共16页
The aquaculture industry has developed significantly over the past few decades and has had a substantial impact on the global food supply and marine fisheries resources.However,some problems arise behind the scenes du... The aquaculture industry has developed significantly over the past few decades and has had a substantial impact on the global food supply and marine fisheries resources.However,some problems arise behind the scenes due to excessive intensive farming,such as slow animal growth,frequent disease,and lipid metabolism disorders.These problems have limited the sustainable development of the aquaculture industry,and a continuable solution is required.The use of fungal polysaccharide appears to provide a solution to these problems.Therefore,different supplemented levels of Poria cocos polysaccharide(PCP)(0,0.4,0.8,1.2,1.6,and 2.0 g/kg,respectively)were fed to spotted sea bass(Lateolabrax maculatus)in similar size(30.28±0.18 g)in current study.The effects of PCP on growth,physiological parameters,and lipid metabolism of spotted sea bass were investigated after a 4-week rearing period.Results showed,fish with PCP intake presented a significantly higher weight gain,specific growth rate,and a significantly lower feed conversion ratio.Significantly higher trypsin activity in liver and intestine were observed in fish with PCP intake.The superoxide dismutase activity in serum and liver of fish with PCP intake were significantly improved,while significantly higher serum total antioxidant capacity and hepatic catalase activity were also observed.However,no significant differences in lysozyme and alkaline phosphatase activity were evident among groups.Fish with PCP intake showed a significantly lower total cholesterol,but no noteworthy change in triglyceride and lipid-metabolismrelated genes expression were observed among groups.Results indicated that intake of PCP has a positive effect on growth and antioxidant capacity of spotted sea bass,but seems to have a limited effect on the non-specific immunity and lipid metabolism of spotted sea bass.Based on the regression analysis results,1.4 g/kg of PCP is the optimal dose for spotted sea bass in size(30.28±0.18 g). 展开更多
关键词 spotted sea bass Poria cocos POLYSACCHARIDE GROWTH lipid metabolism
下载PDF
Lipid metabolism-related long noncoding RNAs:A potential prognostic biomarker for hepatocellular carcinoma
8
作者 Rui-Nan Zhang Jian-Gao Fan 《World Journal of Gastroenterology》 SCIE CAS 2024年第33期3799-3802,共4页
The incidence rates of hepatocellular carcinoma(HCC)have increased in recent decades.Despite advancements in therapy and early diagnosis improving shortterm prognosis,long-term outcomes remain poor.Long noncoding RNAs... The incidence rates of hepatocellular carcinoma(HCC)have increased in recent decades.Despite advancements in therapy and early diagnosis improving shortterm prognosis,long-term outcomes remain poor.Long noncoding RNAs(lncRNAs)and lipid metabolism play crucial roles in the development and progression of HCC.Enhanced lipid synthesis promotes HCC progression,and lncRNAs can reprogram the expression of lipogenic enzymes.Consequently,lipid metabolism-related(LMR)-lncRNAs regulate lipid anabolism,accelerating the onset and progression of HCC.This suggests that LMR-lncRNAs could serve as novel prognostic biomarkers and therapeutic targets. 展开更多
关键词 Long noncoding RNAs lipid metabolism Hepatocellular carcinoma PROGNOSIS BIOMARKER
下载PDF
Plant-based meat analogues aggravated lipid accumulation by regulating lipid metabolism homeostasis in mice
9
作者 Yunting Xie Linlin Cai +4 位作者 Zhiji Huang Kai Shan Xinglian Xu Guanghong Zhou Chunbao Li 《Food Science and Human Wellness》 SCIE CSCD 2024年第2期946-960,共15页
To determine the effects of plant-based meat analogues on the metabolic health and the possible mechanisms,mice were fed with a real pork diet(AP),a real beef diet(AB),a plant-based pork analogue diet(PP)and plant-bas... To determine the effects of plant-based meat analogues on the metabolic health and the possible mechanisms,mice were fed with a real pork diet(AP),a real beef diet(AB),a plant-based pork analogue diet(PP)and plant-based beef analogue diet(PB)for 68 days.Compared with real meat,the plant-based meat analogues increased food and energy intake,body weight,white fat and liver weight and caused adipocyte hypertrophy,hepatic lipid droplet accumulation,and inflammatory responses in mice.Metabolomics revealed that plantbased meat analogues altered the composition of serum metabolites,which regulated lipid metabolism homeostasis.The PB diet upregulated gene expression related to lipid synthesis,lipolysis and adipocyte differentiation while the PP diet upregulated expression of lipolysis-related genes but downregulated expression of adipocyte differentiation-related genes in white adipose tissue.Meanwhile,both PP and PB diets upregulated lipid influx-and synthesis-related genes but downregulated lipid oxidation-related genes in liver.The specific metabolite biomarkers may affect fat accumulation mainly by direct lipid metabolism pathways or indirect amino acid metabolism,protein digestion and absorption,bile secretion,aminoacyl-tRNA biosynthesis,neuroactive ligand-receptor interaction and ABC transporters pathways.These findings provide a new insight into understanding the differences in nutritional functions of meat and plant-based meat analogues. 展开更多
关键词 Meat analogues Metabolomics lipid metabolism Adipose tissue dysfunction Ectopic fat deposition
下载PDF
Secreted Frizzled-Related Protein 5 Mediates Wnt5a Expression in Microcystin-Leucine-Arginine-Induced Liver Lipid Metabolism Disorder in Mice
10
作者 Meiyan Yang Furong Yu +3 位作者 Qianqian Ji Huiying Zhang Jiaxiang Zhang Daojun Chen 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2024年第8期850-864,共15页
Objective Microcystin-leucine-arginine(MC-LR)exposure induces lipid metabolism disorders in the liver.Secreted frizzled-related protein 5(SFRP5)is a natural antagonist of winglesstype MMTV integration site family,memb... Objective Microcystin-leucine-arginine(MC-LR)exposure induces lipid metabolism disorders in the liver.Secreted frizzled-related protein 5(SFRP5)is a natural antagonist of winglesstype MMTV integration site family,member 5A(Wnt5a)and an anti-inflammatory adipocytokine.In this study,we aimed to investigate whether MC-LR can induce lipid metabolism disorders in hepatocytes and whether SFRP5,which has anti-inflammatory effects,can alleviate the effects of hepatic lipid metabolism by inhibiting the Wnt5a/Jun N-terminal kinase(JNK)pathway.Methods We exposed mice to MC-LR in vivo to induce liver lipid metabolism disorders.Subsequently,mouse hepatocytes that overexpressed SFRP5 or did not express SFRP5 were exposed to MC-LR,and the effects of SFRP5 overexpression on inflammation and Wnt5a/JNK activation by MC-LR were observed.Results MC-LR exposure induced liver lipid metabolism disorders in mice and significantly decreased SFRP5 mRNA and protein levels in a concentration-dependent manner.SFRP5 overexpression in AML12cells suppressed MC-LR-induced inflammation.Overexpression of SFRP5 also inhibited Wnt5a and phosphorylation of JNK.Conclusion MC-LR can induce lipid metabolism disorders in mice,and SFRP5 can attenuate lipid metabolism disorders in the mouse liver by inhibiting Wnt5a/JNK signaling. 展开更多
关键词 Jun N-terminal kinase Secreted frizzled-related protein 5 WNT5A Hepatic lipid metabolism disorder
下载PDF
Limosilactobacillus mucosae FZJTZ26M3 prevents NAFLD in mice through modulation of lipid metabolism and gut microbiota dysbiosis
11
作者 Danting Dang Bowen Li +5 位作者 Mengfan Ding RPaul Ross Catherine Stanton Jianxin Zhao Bo Yang Wei Chen 《Food Science and Human Wellness》 SCIE CSCD 2024年第3期1589-1601,共13页
Lactobacillus are considered promising therapeutic methods for nonalcoholic fatty liver disease(NAFLD).The effects of two strains of Ltmosilactobacillus mucosae on NAFLD were investigated in this study.Fourweek-old ma... Lactobacillus are considered promising therapeutic methods for nonalcoholic fatty liver disease(NAFLD).The effects of two strains of Ltmosilactobacillus mucosae on NAFLD were investigated in this study.Fourweek-old male C57BL/6J mice were divided into 4 groups(n=8 per group,Control,Model,FZJTZ26M3,FGSYC17L3).L.mucosae FZJTZ26M3 reduced the mice 's body weight,liver weight,and adipose tissue weight after 12 weeks of therapy.According to serum analysis,total cholesterol,triacylglycerol,and low-density lipoprotein cholesterol significantly decreased after L.mucosae FZJTZ26M3 intervention.Liver pathology showed that L.mucosae FZJTZ26M3 was effective to ameliorate lipid deposition in NAFLD mice.Additionally,the expression of the gene related to lipid metabolism in the liver and adipose tissue was analyzed,and the results indicated that L.mucosae FZJTZ26M3 could alleviate NAFLD by regulating lipid metabolism.Furthermore,the results of 16S rRNA gene sequencing revealed a drop in the relative abundance of Ruminococcaceae,which is linked to inflammation,but the relative abundance of a potential probiotic Akkermansia significantly increased after L.mucosae FZJTZ26M3 intervention.Generally,L.mucosae FZJTZ26M3 could be a candidate to prevent NAFLD. 展开更多
关键词 Limosilactobacillus mucosae Nonalcoholic fatty liver disease(NAFLD) Probiotic lipid metabolism Gut microbiota
下载PDF
Effects of different energy levels in low-protein diet on liver lipid metabolism in the late-phase laying hens through the gut-liver axis
12
作者 Hong Hu Ying Huang +7 位作者 Anjian Li Qianhui Mi Kunping Wang Liang Chen Zelong Zhao Qiang Zhang Xi Bai Hongbin Pan 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2024年第5期2122-2136,共15页
Background The energy/protein imbalance in a low-protein diet induces lipid metabolism disorders in late-phase laying hens.Reducing energy levels in the low-protein diet to adjust the energy-to-protein ratio may impro... Background The energy/protein imbalance in a low-protein diet induces lipid metabolism disorders in late-phase laying hens.Reducing energy levels in the low-protein diet to adjust the energy-to-protein ratio may improve fat deposition,but this also decreases the laying performance of hens.This study investigated the mechanism by which different energy levels in the low-protein diet influences liver lipid metabolism in late-phase laying hens through the enterohepatic axis to guide feed optimization and nutrition strategies.A total of 288 laying hens were randomly allocated to the normal-energy and normal-protein diet group(positive control:CK)or 1 of 3 groups:lowenergy and low-protein diet(LL),normal-energy and low-protein diet(NL),and high-energy and low-protein diet(HL)groups.The energy-to-protein ratios of the CK,LL,NL,and HL diets were 0.67,0.74,0.77,and 0.80,respectively.Results Compared with the CK group,egg quality deteriorated with increasing energy intake in late-phase laying hens fed low-protein diet.Hens fed LL,NL,and HL diets had significantly higher triglyceride,total cholesterol,acetylCo A carboxylase,and fatty acid synthase levels,but significantly lower hepatic lipase levels compared with the CK group.Liver transcriptome sequencing revealed that genes involved in fatty acid beta-oxidation(ACOX1,HADHA,EHHADH,and ACAA1)were downregulated,whereas genes related to fatty acid synthesis(SCD,FASN,and ACACA)were upregulated in LL group compared with the CK group.Comparison of the cecal microbiome showed that in hens fed an LL diet,Lactobacillus and Desulfovibrio were enriched,whereas riboflavin metabolism was suppressed.Cecal metabolites that were most significantly affected by the LL diet included several vitamins,such as riboflavin(vitamin B2),pantethine(vitamin B5 derivative),pyridoxine(vitamin B6),and 4-pyridoxic acid.Conclusion A lipid metabolism disorder due to deficiencies of vitamin B2 and pantethine originating from the metabolism of the cecal microbiome may be the underlying reason for fat accumulation in the liver of late-phase laying hens fed an LL diet.Based on the present study,we propose that targeting vitamin B2 and pantethine(vitamin B5 derivative)might be an effective strategy for improving lipid metabolism in late-phase laying hens fed a low-protein diet. 展开更多
关键词 Cecal microbiome Energy/protein imbalance Late-phase laying hens laying hens Liver lipid metabolism Low-protein diet Multi-omics
下载PDF
Effects of altering the ratio of C16:0 and cis-9 C18:1 in rumen bypass fat on growth performance, lipid metabolism, intestinal barrier, cecal microbiota, and inflammation in fattening bulls
13
作者 Haixin Bai Haosheng Zhang +3 位作者 Congwen Wang Modinat Tolani Lambo Yang Li Yonggen Zhang 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2024年第5期2156-2174,共19页
Background C16:0 and cis-9 C18:1 may have different effects on animal growth and health due to unique metabolism in vivo.This study was investigated to explore the different effects of altering the ratio of C16:0 and ... Background C16:0 and cis-9 C18:1 may have different effects on animal growth and health due to unique metabolism in vivo.This study was investigated to explore the different effects of altering the ratio of C16:0 and cis-9 C18:1 in fat supplements on growth performance,lipid metabolism,intestinal barrier,cecal microbiota,and inflammation in fattening bulls.Thirty finishing Angus bulls(626±69 kg,21±0.5 months)were divided into 3 treatments according to the randomized block design:(1)control diet without additional fat(CON),(2)CON+2.5%palmitic acid calcium salt(PA,90%C16:0),and(3)CON+2.5%mixed fatty acid calcium salt(MA,60%C16:0+30%cis-9 C18:1).The experiment lasted for 104 d,after which all the bulls were slaughtered and sampled for analysis.Results MA tended to reduce 0–52 d dry matter intake compared to PA(DMI,P=0.052).Compared with CON and MA,PA significantly increased 0–52 d average daily gain(ADG,P=0.027).PA tended to improve the 0–52 d feed conversion rate compared with CON(FCR,P=0.088).Both PA and MA had no significant effect on 52–104 days of DMI,ADG and FCR(P>0.05).PA tended to improve plasma triglycerides compared with MA(P=0.077),significantly increased plasma cholesterol(P=0.002)and tended to improve subcutaneous adipose weight(P=0.066)when compared with CON and MA.Both PA and MA increased visceral adipose weight compared with CON(P=0.021).Only PA increased the colonization of Rikenellaceae,Ruminococcus and Proteobacteria in the cecum,and MA increased Akkermansia abundance(P<0.05).Compared with CON,both PA and MA down-regulated the m RNA expression of Claudin-1 in the jejunum(P<0.001),increased plasma diamine oxidase(DAO,P<0.001)and lipopolysaccharide(LPS,P=0.045).Compared with CON and MA,PA down-regulated the ZO-1 in the jejunum(P<0.001)and increased plasma LPS-binding protein(LBP,P<0.001).Compared with CON,only PA down-regulated the Occludin in the jejunum(P=0.013).Compared with CON,PA and MA significantly up-regulated the expression of TLR-4 and NF-κB in the visceral adipose(P<0.001)and increased plasma IL-6(P<0.001).Compared with CON,only PA up-regulated the TNF-αin the visceral adipose(P=0.01).Compared with CON and MA,PA up-regulated IL-6 in the visceral adipose(P<0.001),increased plasma TNF-α(P<0.001),and reduced the Ig G content in plasma(P=0.035).Compared with CON,PA and MA increased C16:0 in subcutaneous fat and longissimus dorsi muscle(P<0.05),while more C16:0 was also deposited by extension and desaturation into C18:0 and cis-9 C18:1.However,neither PA nor MA affected the content of cis-9 C18:1 in longissimus dorsi muscle compared with CON(P>0.05).Conclusions MA containing 30%cis-9 C18:1 reduced the risk of high C16:0 dietary fat induced subcutaneous fat obesity,adipose tissue and systemic low-grade inflammation by accelerating fatty acid oxidative utilization,improving colonization of Akkermansia,reducing intestinal barrier damage,and down-regulating NF-κB activation. 展开更多
关键词 C16:0 cis-9 C18:1 Finishing bulls Intestinal homeostasis lipid metabolism Low-grade inflammation
下载PDF
Mechanistic study of lipid metabolism disorders in diabetic kidney disease treated with GLQMP based on network pharmacology,molecular docking and in vitro experiments
14
作者 Shu-Man Liu Zi-Jie Yan +1 位作者 Man Xiao Yi-Qiang Xie 《Traditional Medicine Research》 2024年第2期42-51,共10页
Background:In this study,we used network pharmacology and molecular docking combined with vitro experiments to explore the potential mechanism of action of Gualou Qumai pill(GLQMP)against DKD.Methods:We screened effec... Background:In this study,we used network pharmacology and molecular docking combined with vitro experiments to explore the potential mechanism of action of Gualou Qumai pill(GLQMP)against DKD.Methods:We screened effective compounds and drug targets using Chinese medicine systemic pharmacology database and analysis platform and Chinese medicine molecular mechanism bioinformatics analysis tools;and searched for DKD targets using human online Mendelian genetics and gene cards.The potential targets of GLQMP for DKD were obtained through the intersection of drug targets and disease targets.Cytoscape software was applied to build herbal medicine-active compound-target-disease networks and analyze them;protein-protein interaction networks were analyzed using the STRING database platform;gene ontology and Kyoto Encyclopedia of Genes and Genomes were used for gene ontology and gene and genome encyclopedia to enrich potential targets using the DAVID database;and the AutoDock Vina 1.1.2 software for molecular docking of key targets with corresponding key components.In vitro experiments were validated by CCK8,oil red O staining,TC,TG,RT-qPCR,and Western blot.Results:Through network pharmacology analysis,a total of 99 potential therapeutic targets of GLQMP for DKD and the corresponding 38 active compounds were obtained,and 5 core compounds were identified.By constructing the protein-protein interaction network and performing network topology analysis,we found that PPARA and PPARG were the key targets,and then we molecularly docked these two key targets with the 38 active compounds,especially the 5 core compounds,and found that PPARA and PPARG had good binding ability with a variety of compounds.In vitro experiments showed that GLQMP was able to ameliorate HK-2 cell injury under high glucose stress,improve cell viability,reduce TC and TG levels as well as decrease the accumulation of lipid droplets,and RT-qPCR and Western blot confirmed that GLQMP was able to promote the expression levels of PPARA and PPARG.Conclusion:Overall,this study revealed the active compounds,important targets and possible mechanisms of GLQMP treatment for DKD,and conducted preliminary verification experiments on its correctness,provided novel insights into the treatment of DKD by GLQMP. 展开更多
关键词 Gualou Qumai pill diabetic kidney disease disorder of lipid metabolism network pharmacology molecular docking
下载PDF
Effect of Maternal DEHP Exposure on Lipid Metabolism in Adult Male Rats and the Antagonistic Effect of Genistein 被引量:1
15
作者 ZHANG Yun Bo LI Jiang Li +1 位作者 TIAN Jie NA Xiao Lin 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2024年第3期315-319,共5页
Lipid metabolism refers to the biochemical processes involved in synthesising,storing,utilising,and breaking down lipids in living organisms.Lipids are essential for various physiological functions,including energy st... Lipid metabolism refers to the biochemical processes involved in synthesising,storing,utilising,and breaking down lipids in living organisms.Lipids are essential for various physiological functions,including energy storage,insulation,protection of organs,and the formation of cell membranes.Aberrations in lipid metabolism can lead to a number of health issues,such as atherosclerosis,obesity,and type 2 diabetes,etc.[1].Environmental factors,genetics,and lifestyle factors are some of the factors that can contribute to the development of dyslipidemia.Currently,there is a growing academic interest in the impact of environmental factors. 展开更多
关键词 lipid metabolism ORGANS
下载PDF
ATF4 regulates lipid metabolism and thermogenesis 被引量:16
16
作者 Chunxia Wang Zhiying Huang Ying Du Ying Cheng Shanghai Chen Feifan Guo 《Cell Research》 SCIE CAS CSCD 2010年第2期174-184,共11页
Activating transcription factor 4 (ATF4) has been shown to play key roles in many physiological processes. There are no reports, however, demonstrating a direct link between ATF4 and lipid metabolism. We noticed tha... Activating transcription factor 4 (ATF4) has been shown to play key roles in many physiological processes. There are no reports, however, demonstrating a direct link between ATF4 and lipid metabolism. We noticed that Atf4- deficient mice are lean, suggesting a possible role for ATF4 in regulating lipid metabolism. The goal of our current study is to investigate the involvement of ATF4 in lipid metabolism and elucidate the underlying mechanisms. Studies using Atf4-deficient mice revealed increased energy expenditure, as measured by oxygen consumption. These mice also showed increases in lipolysis, expression of uncoupling protein 2 (UCP2) and p-oxidation genes and decreases in expression of lipogenic genes in white adipose tissue (WAT), suggesting increased utilization and decreased synthesis of fatty acids, respectively. Expression of UCP1, 2 and 3 was also increased in brown adipose tissue (BAT), suggesting increased thermogenesis. The effect of ATF4 deletion on expression of UCPs in BAT suggests that increased thermogenesis may underlie increased energy expenditure. Thus, our study identifies a possible new function for ATF4 in regulating lipid metabolism and thermogenesis. 展开更多
关键词 ATF4 lipid metabolism THERMOGENESIS WAT BAT
下载PDF
Changes in lipid metabolism in chronic hepatitis C 被引量:22
17
作者 Katalin Jármay Gizella Karácsony +1 位作者 András Nagy Zsuzsa Schaff 《World Journal of Gastroenterology》 SCIE CAS CSCD 2005年第41期6422-6428,共7页
AIM: To investigate the relationship between certain biochemical parameters of lipid metabolism in the serum and steatosis in the liver.METHODS: The grade of steatosis (0-3) and histological activity index (HAI, 0-18)... AIM: To investigate the relationship between certain biochemical parameters of lipid metabolism in the serum and steatosis in the liver.METHODS: The grade of steatosis (0-3) and histological activity index (HAI, 0-18) in liver biopsy specimens were correlated with serum alanine aminotransferase (ALT), total cholesterol and triglyceride levels in 142 patients with chronic hepatitis C (CH-C), and 28 patients with non-alcoholic fatty liver disease (NAFLD) without hepatitis C virus (HCV) infection. The serum parameters were further correlated with 1 797 age and sex matched control patients without any liver diseases.RESULTS: Steatosis was detected in 90 out of 142 specimens (63%) with CH-C. The ALT levels correlated with the grade of steatosis, both in patients with CH-C and NAFLD (P<0.01). Inserting the score values of steatosis as part of the HAI, correlation with the ALT level (P<0.00001) was found. The triglyceride and cholesterol levels were significantly lower in patients with CH-C (with and without steatosis), compared to the NAFLD group and to the virus-free control groups.CONCLUSION: Our study confirms the importance of liver steatosis in CH-C which correlates with lower lipid levels in the sera. Inclusion of the score of steatosis into HAI, in case of CH-C might reflect the alterations in the liver tissue more precisely, while correlating with the ALT enzyme elevation. 展开更多
关键词 lipid metabolism Chronic hepatitis C NAFLD
下载PDF
Role of abnormal lipid metabolism in development,progression,diagnosis and therapy of pancreatic cancer 被引量:19
18
作者 Julian Swierczynski Areta Hebanowska Tomasz Sledzinski 《World Journal of Gastroenterology》 SCIE CAS 2014年第9期2279-2303,共25页
There is growing evidence that metabolic alterations play an important role in cancer development and progression.The metabolism of cancer cells is reprogrammed in order to support their rapid proliferation.Elevated f... There is growing evidence that metabolic alterations play an important role in cancer development and progression.The metabolism of cancer cells is reprogrammed in order to support their rapid proliferation.Elevated fatty acid synthesis is one of the most important aberrations of cancer cell metabolism.An enhancement of fatty acids synthesis is required both for carcinogenesis and cancer cell survival,as inhibition of key lipogenic enzymes slows down the growth of tumor cells and impairs their survival.Based on the data that serum fatty acid synthase(FASN),also known as oncoantigen 519,is elevated in patients with certain types of cancer,its serum level was proposed as a marker of neoplasia.This review aims to demonstrate the changes in lipid metabolism and other metabolic processes associated with lipid metabolism in pancreatic ductal adenocarcinoma(PDAC),the most common pancreatic neoplasm,characterized by high mortality.We also addressed the influence of some oncogenic factors and tumor suppressors on pancreatic cancer cell metabolism.Additionally the review discusses the potential role of elevated lipid synthesis in diagnosis and treatment of pancreatic cancer.In particular,FASN is a viable candidate for indicator of pathologic state,marker of neoplasia,as well as,pharmacological treatment target in pancreatic cancer.Recent research showed that,in addition to lipogenesis,certain cancer cells can use fatty acids from circulation,derived from diet(chylomicrons),synthesized in liver,or released from adipose tissue for their growth.Thus,the interactions between de novo lipogenesis and uptake of fatty acids from circulation by PDAC cells require further investigation. 展开更多
关键词 Pancreatic cancer lipid metabolism Fatty acid synthase Monounsaturated fatty acids Farnesylation Hypoxia inducible factor Cyclooxygenase-2 Oncogenes Tumor suppressors Lipogenic enzymes inhibitors
下载PDF
Effects of Allicin on Lipid Metabolism and Antioxidant Activity in Chickens 被引量:3
19
作者 Wang Gong-chen Han Lu-lu +3 位作者 Wang Jing Lang Wan-nan Pan Chuan-yi Li Yan-fei 《Journal of Northeast Agricultural University(English Edition)》 CAS 2014年第3期46-49,共4页
To investigate the effects of allicin on chickens' lipid and antioxidant performance, Hy-laying hens' diets were replenished with 0 mg · kg-1, 50 mg · kg-1, 100 mg · kg-1, and 150 mg · kg-1 allic... To investigate the effects of allicin on chickens' lipid and antioxidant performance, Hy-laying hens' diets were replenished with 0 mg · kg-1, 50 mg · kg-1, 100 mg · kg-1, and 150 mg · kg-1 allicin for 42 days, respectively. The alanine aminotransferase(ALT), aspartate aminotransferase(AST), triglyceride(TG), total cholesterol(TCHO), high density lipoprotein(HDL), and low density lipoprotein(LDL) levels were measured in chicken serum. Superoxide dismutase(SOD), glutathione peroxidase(GSH-Px) activity and malondialdehyde(MDA) levels were measured in chicken serum and liver tissue homogenate. The results showed that the supplement dose of allicin tested did not significantly change the activity of ALT or AST(P〉0.05); TG and CHOL levels decreased with the increase of allicin additive doses, and the difference between treatment groups and CG was significant(P〈0.05), and there was the best effect with 100 mg · kg-1; allicin significantly reduced the content of MDA, and increased SOD and GSH-Px activities compared with CG(P〈0.05), and 100 mg · kg-1 of allicin resulted in the strongest SOD and GSH-Px activity. The antioxidant function test results of liver tissue homogenate were consistant with that of serum. Our findings indicated that allicin could enhance antioxidant capacity and reduce blood lipid level in chickens and 100 mg · kg-1 was the optimal amount of allicin additives. 展开更多
关键词 ALLICIN CHICKEN lipid metabolism antioxidant capacity
下载PDF
Isoflavone Regulates Lipid Metabolism via Expression of Related Genes in OVX Rats Fed on a High-fat Diet 被引量:2
20
作者 XIAO-LIN NA JUNKO EZAKI +2 位作者 FUMIE SUGIYAMA HONG-BIN CUI AND YOSHIKO ISHIMI 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2008年第5期357-364,共8页
Objective To investigate the effects of isoflavone on body weight, fat mass, and gene expression in relation to lipid metabolism. Methods Thirty-six female SD rats were ovariectomized or sham-operated and fed on a hig... Objective To investigate the effects of isoflavone on body weight, fat mass, and gene expression in relation to lipid metabolism. Methods Thirty-six female SD rats were ovariectomized or sham-operated and fed on a high-fat diet. Two months later, abdominal incision was made, blood was collected to separate serum, and the liver and adipose tissue were immediately collected and weighed. Some portions of these tissues were frozen in liquid nitrogen and stored at -80℃. Results Ovariectomy (OVX) with a high-fat diet could induce obesity in rats, while treatment with isoflavone significantly inhibited the increase in body weight and fat mass in abdomen. Serum total cholesterol and leptin were significantly decreased in isoflavone group, compared with the OVX group. The mRNA expression of liver fatty acid synthase (FAS) in the OVX group was significantly higher than that in sham-operated group, while this difference was not observed in the isoflavone group. The mRNA expression of liver hormone-sensitive lipase (HSL) in the OVX rats tended to be lower than that in the sham-operated rats. Furthermore, a large amount of isoflavone maintained the mRNA expression at a sham level. Conclusion Isoflavone may prevent obesity induced by ovariectomy with a high-fat diet, in part by modulating gene expression related to lipid metabolism. 展开更多
关键词 ISOFLAVONE lipid metabolism OVARIECTOMY OBESITY Gene expression
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部