Biodiversity experiments have shown that soil organic carbon(SOC)is not only a function of plant diversity,but is also closely related to the nitrogen(N)-fixing plants.However,the effect of N-fixing trees on SOC chemi...Biodiversity experiments have shown that soil organic carbon(SOC)is not only a function of plant diversity,but is also closely related to the nitrogen(N)-fixing plants.However,the effect of N-fixing trees on SOC chemical stability is still little known,especially with the compounding effects of tree species diversity.An experimental field manipulation was established in subtropical plantations of southern China to explore the impacts of tree species richness(i.e.,one,two,four and six tree species)and with/without N-fixing trees on SOC chemical stability,as indicated by the ratio of easily oxidized organic carbon to SOC(EOC/SOC).Plant-derived C components in terms of hydrolysable plant lipids and lignin phenols were isolated from soils for evaluating their relative contributions to SOC chemical stability.The results showed that N-fixing tree species rather than tree species richness had a significant effect on EOC/SOC.Hydrolysable plant lipids and lignin phenols were negatively correlated with EOC/SOC,while hydrolysable plant lipids contributed more to EOC/SOC than lignin phenols,especially in the occurrence of N-fixing trees.The presence of N-fixing tree species led to an increase in soil N availability and a decrease in fungal abundance,promoting the selective retention of certain key components of hydrolysable plant lipids,thus enhancing SOC chemical stability.These findings underpin the crucial role of N-fixing trees in shaping SOC chemical stability,and therefore,preferential selection of N-fixing tree species in mixed plantations is an appropriate silvicultural strategy to improve SOC chemical stability in subtropical plantations.展开更多
Many patients with neurodegenerative diseases,such as Alzheimer’s(AD)and Parkinson’s(PD)diseases suffer from disease progression without any satisfying clinical intervention,likely due to our lack of knowledge on ho...Many patients with neurodegenerative diseases,such as Alzheimer’s(AD)and Parkinson’s(PD)diseases suffer from disease progression without any satisfying clinical intervention,likely due to our lack of knowledge on how normal aging impacts the pathogenic mechanisms of these debilitating diseases.A growing body of literature has emerged in recent years that clearly demonstrates the involvement of glycolipids in the protein-oligomerization of neurodegenerative disorders.We hypothesize that changes in glycolipids composition are a common mechanism underlying the shift from healthy brain aging to the neuropathological processes of neurodegenerative diseases.展开更多
Parkinson's disease–A lipidopathy?The histopathological hallmark of Parkinson's disease(PD)and dementia with Lewy bodies are inclusions enriched inα-synuclein(α-syn),known as Lewy bodies,which are not only ...Parkinson's disease–A lipidopathy?The histopathological hallmark of Parkinson's disease(PD)and dementia with Lewy bodies are inclusions enriched inα-synuclein(α-syn),known as Lewy bodies,which are not only composed of proteins,but also a core of lipid species.PD has been thus far principally thought of as a“proteinopathy”caused by the misfolding of α-syn.展开更多
Objective To investigate the serum lipid profiles of patients with localized osteosarcoma around the knee joint before and after neoadjuvant chemotherapy.Methods After retrospectively screening the data of 742 patient...Objective To investigate the serum lipid profiles of patients with localized osteosarcoma around the knee joint before and after neoadjuvant chemotherapy.Methods After retrospectively screening the data of 742 patients between January 2007 and July 2020,50 patients aged 13 to 39 years with Enneking stage II disease were included in the study.Serum lipid levels,including total cholesterol(TC),triglycerides(TG),high-density lipoprotein cholesterol(HDL-C),low-density lipoprotein cholesterol(LDL-C),lipoprotein-α[Lp(a)],and apolipoprotein A1,B,and E(ApoA1,ApoB,and ApoE),and clinicopathological characteristics were collected before and after neoadjuvant chemotherapy.Results The mean levels of TC,TG,and ApoB were significantly increased following neoadjuvant chemotherapy(16%,38%,and 20%,respectively,vs.pretreatment values;P<0.01).The mean levels of LDL-C and ApoE were also 19%and 16%higher,respectively(P<0.05).No correlation was found between the pretreatment lipid profile and the histologic response to chemotherapy.An increase in Lp(a)was strongly correlated with the Ki-67 index(R=0.31,P=0.023).Moreover,a trend toward longer disease-free survival(DFS)was observed in patients with decreased TG and increased LDL-C following chemotherapy,although this difference was not statistically significant(P=0.23 and P=0.24,respectively).Conclusion Significant elevations in serum lipids were observed after neoadjuvant chemotherapy in patients with localized osteosarcoma.There was no prognostic significance of pretreatment serum lipid levels on histologic response to neoadjuvant chemotherapy.The scale of increase in serum Lp(a)might have a potential prognostic role in osteosarcoma.Patients with increased LDL-C or reduced TG after chemotherapy seem to exhibit a trend toward favorable DFS.展开更多
Objective To analyze the interactions between different structural types of volatile oil compo-nents(VOCs)and skin lipid molecules;and investigate the mechanism of volatile oil in Chi-nese materia medica(VOCMM)as pene...Objective To analyze the interactions between different structural types of volatile oil compo-nents(VOCs)and skin lipid molecules;and investigate the mechanism of volatile oil in Chi-nese materia medica(VOCMM)as penetration enhancers.Methods In this study;210 different structural types of VOCs were selected from the VOCMM penetration enhancer database;and the molecular docking experiments were conducted with three main lipid molecules of skin:ceramide 2(CER2);cholesterol(CHL);and free fatty acid(FFA).Each VOC was docked individually with each lipid molecule.Cluster analysis was used to explore the relationship between the binding energy of VOCs and their molecular struc-tures.Nine specific pathogen-free(SPF)Sprague Dawley(SD)rats were randomly divided in-to Control;Nootkatone;and 3-Butylidenephthalide groups for in vitro percutaneous experi-ments;with three rats in each group.The donor pool solutions were 3%gastrodin;3%gas-trodin+3%nootkatone;and 3%gastrodin+3%3-butylidenephthalide;respectively.The pen-etration enhancing effects of VOCs with higher binding energy were evaluated by comparing the 12-hour cumulative percutaneous absorption of gastrodin(Q12;µg/cm²).Results(i)Most of the VOCs were non-hydrogen bonded to the hydrophobic parts of CHL and FFA;and hydrogen bonded to the head group of CER2.Among them;sesquiterpene ox-ides showed the most pronounced binding affinity to CER2.The VOCs with 2-4 rings(in-cluding carbon rings;benzene rings;and heterocycles)demonstrated stronger binding affini-ty for three skin lipid molecules compared with the VOCs without intramolecular rings(P<0.01).(ii)According to the cluster analysis;most of the VOCs that bond well to CER2 had 2-3 intramolecular rings.The non-oxygenated VOCs were bonded to CER2 in a hydrophobic manner.The oxygenated VOCs were mostly bonded to CER2 by hydrogen bonding.(iii)The results of Franz diffusion cell experiment showed that the Q12 of Control group was 260.60±25.09µg/cm2;and the transdermal absorption of gastrodin was significantly increased in Nootkatone group(Q12=5503.00±1080.00µg/cm²;P<0.01).The transdermal absorption of gastrodin was also increased in 3-Butylidenephthalide group(Q12=495.40±56.98µg/cm²;P>0.05).(iv)The type of oxygen-containing functional groups in VOCs was also an influencing factor of binding affinity to CER2.Conclusion The interactions between different types of VOCs with different structures in the VOCMM and three skin lipid molecules in the stratum corneum were investigated at the molecular level in this paper.This research provided theoretical guidance and data support for the screening of volatile oil-based penetration enhancers;and a simple and rapid method for studying the penetration-enhancing mechanism of volatile oils.展开更多
BACKGROUND Previous epidemiologic investigations have consistently demonstrated a strong association between the ratio of cholesterol to total lipids in medium very-lowdensity lipoprotein(VLDL)and the occurrence of pe...BACKGROUND Previous epidemiologic investigations have consistently demonstrated a strong association between the ratio of cholesterol to total lipids in medium very-lowdensity lipoprotein(VLDL)and the occurrence of peptic ulcers(PU).However,the precise causal relationship between these factors remains ambiguous.Consequently,this study aims to elucidate the potential correlation between the ratio of cholesterol to total lipids in medium VLDL and the incidence of peptic ulcer.AIM To investigate the ratio of cholesterol to total lipids in medium very-low-density lipoprotein(VLDL)association with PU via genetic methods,guiding future clinical research.METHODS Genome-wide association study(GWAS)datasets for the ratio of cholesterol to total lipids in intermediate VLDL and peptic ulcer were retrieved from the IEU OpenGWAS project(https://gwas.mrcieu.ac.uk).For the forward Mendelian randomization(MR)analysis,72 single nucleotide polymorphisms(SNPs)were identified as instrumental variables.These SNPs were selected based on their association with the ratio of cholesterol to total lipids in intermediate VLDL,with peptic ulcer as the outcome variable.Conversely,for the inverse MR analysis,no SNPs were identified with peptic ulcer as the exposure variable and the ratio of cholesterol to total lipids in intermediate VLDL as the outcome.All MR analyses utilized inverse variance weighted(IVW)as the primary analytical method.Additionally,weighted median and MR-Egger methods were employed as supplementary analytical approaches to assess causal effects.Egger regression was used as a supplementary method to evaluate potential directional pleiotropy.Heterogeneity and multiplicity tests were conducted using the leave-one-out method to evaluate result stability and mitigate biases associated with multiple testing.RESULTS The genetically predicted ratio of cholesterol to total lipids in medium VLDL was significantly associated with an elevated risk of peptic ulcer(IVW:OR=2.557,95%CI=1.274-5.132,P=0.008).However,no causal association of peptic ulcer with the ratio of cholesterol to total lipids in medium VLDL was observed in the inverse Mendelian randomization analysis.CONCLUSION In conclusion,our study reveals a significant association between the ratio of cholesterol to total lipids in medium VLDL and an elevated risk of peptic ulcers.However,further validation through laboratory investigations and larger-scale studies is warranted to strengthen the evidence and confirm the causal relationship between these factors.展开更多
[Objectives]To explore the effects of the compatibility of Radix Puerariae and Radix Rehmanniae on blood glucose and blood lipids in diabetic mouses.[Methods]Diabetic mouse model was established.The body weight and fa...[Objectives]To explore the effects of the compatibility of Radix Puerariae and Radix Rehmanniae on blood glucose and blood lipids in diabetic mouses.[Methods]Diabetic mouse model was established.The body weight and fasting blood glucose of mice were measured after 7 and 14 d of administration,and the biochemical indicators of blood lipids(TC,HDL-C,and LDL-C)were detected after 14 d of administration.[Results]Compared with the Radix Puerariae group and Radix Rehmanniae group,the compatibility group(1:2)had the best hypoglycemic effect(P<0.05),and TC and LDL-C in the compatibility group(2:1)significantly decreased(P<0.05),while HDL-C in the compatibility group(1:1)significantly increased(P<0.05).[Conclusions]Radix Puerariae,Radix Rehmanniae and their combination can reduce the blood glucose of diabetic mice.The compatibility group(1:2)had a significant hypoglycemic effect(P<0.05),and LDL-C in the compatibility group(2:1)significantly declined,while HDL-C in the compatibility group(1:1)rose significantly.展开更多
Objective:To investigate and analyze the annual physical examination results of retired employees from a unit in the civil aviation system,focusing on blood lipids,blood glucose,blood uric acid,and blood routine resul...Objective:To investigate and analyze the annual physical examination results of retired employees from a unit in the civil aviation system,focusing on blood lipids,blood glucose,blood uric acid,and blood routine results.The study aims to provide relevant references for formulating reasonable disease management measures for preventing and controlling hyperlipidemia,hyperuricemia,and other conditions in retired employees.Methods:The examination results of 231 participants were collected and analyzed.The participants were divided into four groups based on age:middle-aged group,young-old group,middle-old group,and old-old group.The blood test results were compared across these groups,and an assessment of atherosclerotic cardiovascular disease(ASCVD)risk levels was completed in conjunction with medical history.Blood test results were also compared by gender.Results:There were no significant statistical differences in blood test results when grouped by age.However,the prevalence of hyperuricemia was higher in males than in females,while the prevalence of hypercholesterolemia was higher in females than in males.The LDL-C target achievement rate was lower in the moderate-and-high-risk group as well as the very high-risk group as defined by ASCVD risk levels.Conclusion:Management of hyperuricemia and hyperlipidemia in retired employees(elderly patients)should be strengthened to reduce the risk of ASCVD events and alleviate the potential medical burden associated with disease progression.展开更多
lipid-lowering interventions on the disease.Methods:Two-sample Mendelian randomization analyses were conducted to evaluate the associations of high-density lipoprotein cholesterol,low-density lipoprotein cholesterol,t...lipid-lowering interventions on the disease.Methods:Two-sample Mendelian randomization analyses were conducted to evaluate the associations of high-density lipoprotein cholesterol,low-density lipoprotein cholesterol,triglycerides,apolipoprotein B and apolipoprotein A-I levels with risks for sepsis,and those of low-density lipoprotein cholesterol(HMGCR,PCSK9,NPC1L1),triglycerides(LPL,ANGPTL3,APOC3)and high-density lipoprotein cholesterol(CETP),apolipoprotein A-I(CETP),apolipoprotein B(HMGCR,PCSK9,NPC1L1,LPL,APOC3)with sepsis.Results:HMGCR-mediated low-density lipoprotein cholesterol and apolipoprotein B were associated with an increased risk of sepsis,with an odds ratio value of 1.4(95%confidence interval(CI):1.06-1.84,P=0.017)and 1.41(95%CI:1.01-1.98,P=0.046).CETP-mediated high-density lipoprotein cholesterol and apolipoprotein A-I were associated with a reduced risk of sepsis,with an odds ratio of 0.87(95%CI:0.82-0.92,P<0.01)respectively and 0.84(95%CI:0.78-0.9,P<0.01).Sensitivity analysis showed that the results were robust.Conclusion:HMG-CoA reductase inhibitors and CETP inhibitors may contribute to the prevention and treatment of sepsis.展开更多
The thought of using branched-chain amino acids (BCAA) in the prevention and treatment of certain disorders is becoming increasingly popular. Individual BCAA use has been associated with improving glucose tolerance an...The thought of using branched-chain amino acids (BCAA) in the prevention and treatment of certain disorders is becoming increasingly popular. Individual BCAA use has been associated with improving glucose tolerance and liver disease. Previous studies have cited improvements in glucose metabolism with a single dose of L-isoleucine (ILE). However, it is still unclear whether chronic consumption of ILE has any direct benefit. The objective of this study was to examine the influence of chronic ILE supplementation alone or in combination with exercise on fasting serum glucose, insulin, lipids, and lipoprotein cholesterol levels;glucose tolerance;and hepatic lipids in rats. Male Sprague-Dawley rats (n = 40) were divided into Control (low fructose diet);High Fructose diet (HF);HF plus 1.5% ILE (HF + ILE);HF plus exercise (HF + EX);and HF plus 1.5% ILE and exercise (HF + ILE + EX). The HF diets consisted of 70% kcalories from fructose. After 6 weeks of treatment, no significant differences were observed between groups for changes in fasting serum glucose, insulin, lipids, or lipoprotein cholesterol levels. However, hepatic total cholesterol was significantly lower in the HF + ILE + EX compared to the Control and HF, while, the HF + ILE had significantly lower hepatic free cholesterol compared to the HF. We also found no differences between groups for serum glucose response following an oral glucose tolerance test. In conclusion, our study shows that ILE supplementation in rats does not influence serum glucose and lipid biomarkers but may have an influence on lipid metabolic pathways within the liver.展开更多
Vascular etiology is the second most prevalent cause of cognitive impairment globally.Endothelin-1,which is produced and secreted by endothelial cells and astrocytes,is implicated in the pathogenesis of stroke.However...Vascular etiology is the second most prevalent cause of cognitive impairment globally.Endothelin-1,which is produced and secreted by endothelial cells and astrocytes,is implicated in the pathogenesis of stroke.However,the way in which changes in astrocytic endothelin-1 lead to poststroke cognitive deficits following transient middle cerebral artery occlusion is not well understood.Here,using mice in which astrocytic endothelin-1 was overexpressed,we found that the selective overexpression of endothelin-1 by astrocytic cells led to ischemic stroke-related dementia(1 hour of ischemia;7 days,28 days,or 3 months of reperfusion).We also revealed that astrocytic endothelin-1 overexpression contributed to the role of neural stem cell proliferation but impaired neurogenesis in the dentate gyrus of the hippocampus after middle cerebral artery occlusion.Comprehensive proteome profiles and western blot analysis confirmed that levels of glial fibrillary acidic protein and peroxiredoxin 6,which were differentially expressed in the brain,were significantly increased in mice with astrocytic endothelin-1 overexpression in comparison with wild-type mice 28 days after ischemic stroke.Moreover,the levels of the enriched differentially expressed proteins were closely related to lipid metabolism,as indicated by Kyoto Encyclopedia of Genes and Genomes pathway analysis.Liquid chromatography-mass spectrometry nontargeted metabolite profiling of brain tissues showed that astrocytic endothelin-1 overexpression altered lipid metabolism products such as glycerol phosphatidylcholine,sphingomyelin,and phosphatidic acid.Overall,this study demonstrates that astrocytic endothelin-1 overexpression can impair hippocampal neurogenesis and that it is correlated with lipid metabolism in poststroke cognitive dysfunction.展开更多
Esophageal cancer is an upper gastrointestinal malignancy with a bleak prognosis.It is still being explored in depth due to its complex molecular mechanisms of occurrence and development.Lipids play a crucial role in ...Esophageal cancer is an upper gastrointestinal malignancy with a bleak prognosis.It is still being explored in depth due to its complex molecular mechanisms of occurrence and development.Lipids play a crucial role in cells by participating in energy supply,biofilm formation,and signal transduction processes,and lipid metabolic reprogramming also constitutes a significant characteristic of malignant tumors.More and more studies have found esophageal cancer has obvious lipid metabolism abnormalities throughout its beginning,progress,and treatment resistance.The inhibition of tumor growth and the enhancement of antitumor therapy efficacy can be achieved through the regulation of lipid metabolism.Therefore,we reviewed and analyzed the research results and latest findings for lipid metabolism and associated analysis techniques in esophageal cancer,and comprehensively proved the value of lipid metabolic reprogramming in the evolution and treatment resistance of esophageal cancer,as well as its significance in exploring potential therapeutic targets and biomarkers.展开更多
As a highly aggressive tumor,the pathophysiological mechanism of primary liver cancer has attracted much attention.In recent years,factors such as ferroptosis regulation,lipid peroxidation and metabolic abnormalities ...As a highly aggressive tumor,the pathophysiological mechanism of primary liver cancer has attracted much attention.In recent years,factors such as ferroptosis regulation,lipid peroxidation and metabolic abnormalities have emerged in the study of liver cancer,providing a new perspective for understanding the development of liver cancer.Ferroptosis regulation,lipid peroxidation and metabolic abnormalities play important roles in the occurrence and development of liver cancer.The regulation of ferroptosis is involved in apoptosis and necrosis,affecting cell survival and death.Lipid peroxidation promotes oxidative damage and promotes the invasion of liver cancer cells.Metabolic abnormalities,especially the disorders of glucose and lipid metabolism,directly affect the proliferation and growth of liver cancer cells.Studies of ferroptosis regulation and lipid peroxidation may help to discover new therapeutic targets and improve therapeutic outcomes.The understanding of metabolic abnormalities can provide new ideas for the prevention of liver cancer,and reduce the risk of disease by adjusting the metabolic process.This review focuses on the key roles of ferroptosis regulation,lipid peroxidation and metabolic abnormalities in this process.展开更多
Background Adequate level of carbohydrates in aquafeeds help to conserve protein and reduce cost. However, studies have indicated that high-carbohydrate(HC) diet disrupt the homeostasis of the gut–liver axis in large...Background Adequate level of carbohydrates in aquafeeds help to conserve protein and reduce cost. However, studies have indicated that high-carbohydrate(HC) diet disrupt the homeostasis of the gut–liver axis in largemouth bass, resulting in decreased intestinal acetate and butyrate level.Method Herein, we had concepted a set of feeding experiment to assess the effects of dietary sodium acetate(SA) and sodium butyrate(SB) on liver health and the intestinal microbiota in largemouth bass fed an HC diet. The experimental design comprised 5 isonitrogenous and isolipidic diets, including LC(9% starch), HC(18% starch), HCSA(18% starch;2 g/kg SA), HCSB(18% starch;2 g/kg SB), and HCSASB(18% starch;1 g/kg SA + 1 g/kg SB). Juvenile largemouth bass with an initial body weight of 7.00 ± 0.20 g were fed on these diets for 56 d.Results We found that dietary SA and SB reduced hepatic triglyceride accumulation by activating autophagy(ATG101, LC3B and TFEB), promoting lipolysis(CPT1α, HSL and AMPKα), and inhibiting adipogenesis(FAS, ACCA, SCD1 and PPARγ). In addition, SA and SB decreased oxidative stress in the liver(CAT, GPX1α and SOD1) by activating the Keap1-Nrf2 pathway. Meanwhile, SA and SB alleviated HC-induced inflammation by downregulating the expression of pro-inflammatory factors(IL-1β, COX2 and Hepcidin1) through the NF-κB pathway. Importantly, SA and SB increased the abundance of bacteria that produced acetic acid and butyrate(Clostridium_sensu_stricto_1). Combined with the KEGG analysis, the results showed that SA and SB enriched carbohydrate metabolism and amino acid metabolism pathways, thereby improving the utilization of carbohydrates. Pearson correlation analysis indicated that growth performance was closely related to hepatic lipid deposition, autophagy, antioxidant capacity, inflammation, and intestinal microbial composition.Conclusions In conclusion, dietary SA and SB can reduce hepatic lipid deposition;and alleviate oxidative stress and inflammation in largemouth bass fed on HC diet. These beneficial effects may be due to the altered composition of the gut microbiota caused by SA and SB. The improvement effects of SB were stronger than those associated with SA.展开更多
Paclobutrazol is a plant growth regulator and inhibitor of endogenous gibberellin synthesis.It is a powerful inhibitor of vegetative growth by changing the photosynthetic rate and plant hormone levels,thereby affectin...Paclobutrazol is a plant growth regulator and inhibitor of endogenous gibberellin synthesis.It is a powerful inhibitor of vegetative growth by changing the photosynthetic rate and plant hormone levels,thereby affecting plant growth and development.In this study,the effects of paclobutrazol on the model diatom Phaeodactylum tricornutum were investigated.Results show that 2.5-mg/L and 10-mg/L paclobutrazol significantly inhibited the algal growth by inhibiting chlorophyll synthesis,which affects photosynthesis.The antioxidant system,including catalase(CAT)and glutathione peroxidase(GPx)was severely damaged.Chrysolaminarin content was significantly elevated and doubled up to 127 mg/g dry cell weight(DCW)by 10-mg/L paclobutrazol treatment.In combination with transcriptomic analysis,paclobutrazol was demonstrated to play a regulatory role in the accumulation of chrysolaminarin and neutral lipids.展开更多
Due to the non-targeted release and low solubility of anti-gastric cancer agent,apatinib(Apa),a first-line drug with long-term usage in a high dosage often induces multi-drug resistance and causes serious side effects...Due to the non-targeted release and low solubility of anti-gastric cancer agent,apatinib(Apa),a first-line drug with long-term usage in a high dosage often induces multi-drug resistance and causes serious side effects.In order to avoid these drawbacks,lipid-film-coated Prussian blue nanoparticles(PB NPs)with hyaluronan(HA)modification was used for Apa loading to improve its solubility and targeting ability.Furthermore,anti-tumor compound of gamabufotalin(CS-6)was selected as a partner of Apawith reducing dosage for combinational gastric therapy.Thus,HA-Apa-Lip@PB-CS-6 NPs were constructed to synchronously transport the two drugs into tumor tissue.In vitro assay indicated that HA-Apa-Lip@PB-CS-6 NPs can synergistically inhibit proliferation and invasion/metastasis of BGC-823 cells via downregulating vascular endothelial growth factor receptor(VEGFR)and matrix metalloproteinase-9(MMP-9).In vivo assay demonstrated strongest anti-tumor growth and liver metastasis of HA-Apa-Lip@PB-CS-6 NPs administration in BGC-823 cells-bearing mice compared with other groups due to the excellent penetration in tumor tissues and outstanding synergistic effects.In summary,we have successfully developed a new nanocomplexes for synchronous Apa/CS-6 delivery and synergistic gastric cancer(GC)therapy.展开更多
BACKGROUND Hepatocellular carcinoma(HCC)is one of the most common types of tumors.The influence of lipid metabolism disruption on the development of HCC has been demonstrated in published studies.AIM To establish an H...BACKGROUND Hepatocellular carcinoma(HCC)is one of the most common types of tumors.The influence of lipid metabolism disruption on the development of HCC has been demonstrated in published studies.AIM To establish an HCC prognostic model for lipid metabolism-related long non-coding RNAs(LMR-lncRNAs)and conduct in-depth research on the specific role of novel LMR-lncRNAs in HCC.METHODS Correlation and differential expression analyses of The Cancer Genome Atlas data were used to identify differentially expressed LMR-lncRNAs.Quantitative real-time polymerase chain reaction analysis was used to evaluate the expression of LMR-lncRNAs.Nile red staining was employed to observe intracellular lipid levels.The interaction between RP11-817I4.1,miR-3120-3p,and ATP citrate lyase(ACLY)was validated through the performance of dual-luciferase reporter gene and RIP assays.RESULTS Three LMR-lncRNAs(negative regulator of antiviral response,RNA transmembrane and coiled-coil domain family 1 antisense RNA 1,and RP11-817I4.1)were identified as predictive markers for HCC patients and were utilized in the construction of risk models.Additionally,proliferation,migration,and invasion were reduced by RP11-817I4.1 knockdown.An increase in lipid levels in HCC cells was significantly induced by RP11-817I4.1 through the miR-3120-3p/ACLY axis.CONCLUSION LMR-lncRNAs have the capacity to predict the clinical characteristics and prognoses of HCC patients,and the discovery of a novel LMR-lncRNAs,RP11-817I4.1,revealed its role in promoting lipid accumulation,thereby accelerating the onset and progression of HCC.展开更多
Background Triple negative breast cancer(TNBC),the most aggressive subtype of breast cancer,is characterized by a high incidence of brain metastasis(BrM)and a poor prognosis.As the most lethal form of breast cancer,Br...Background Triple negative breast cancer(TNBC),the most aggressive subtype of breast cancer,is characterized by a high incidence of brain metastasis(BrM)and a poor prognosis.As the most lethal form of breast cancer,BrM remains a major clinical challenge due to its rising incidence and lack of effective treatment strategies.Recent evidence suggested a potential role of lipid metabolic reprogramming in breast cancer brain metastasis(BCBrM),but the underlying mechanisms are far from being fully elucidated.Methods Through analysis of BCBrM transcriptome data from mice and patients,and immunohistochemical validation on patient tissues,we identified and verified the specific down-regulation of retinoic acid receptor responder 2(RARRES2),a multifunctional adipokine and chemokine,in BrM of TNBC.We investigated the effect of aberrant RARRES2 expression of BrM in both in vitro and in vivo studies.Key signaling pathway components were evaluated using multi-omics approaches.Lipidomics were performed to elucidate the regulation of lipid metabolic reprogramming of RARRES2.Results We found that downregulation of RARRES2 is specifically associated with BCBrM,and that RARRES2 deficiency promoted BCBrM through lipid metabolic reprogramming.Mechanistically,reduced expression of RARRES2 in brain metastatic potential TNBC cells resulted in increased levels of glycerophospholipid and decreased levels of triacylglycerols by regulating phosphatase and tensin homologue(PTEN)-mammalian target of rapamycin(mTOR)-sterol regulatory element-binding protein 1(SREBP1)signaling pathway to facilitate the survival of breast cancer cells in the unique brain microenvironment.Conclusions Our work uncovers an essential role of RARRES2 in linking lipid metabolic reprogramming and the development of BrM.RARRES2-dependent metabolic functions may serve as potential biomarkers or therapeutic targets for BCBrM.展开更多
Hypoxia is a common environmental stress factor in aquatic organisms,which varies among fish species.However,the mechanisms underlying the ability of fish species to tolerate hypoxia are not well known.Here,we showed ...Hypoxia is a common environmental stress factor in aquatic organisms,which varies among fish species.However,the mechanisms underlying the ability of fish species to tolerate hypoxia are not well known.Here,we showed that hypoxia response in different fish species was affected by lipid catabolism and preference for lipid or carbohydrate energy sources.Activation of biochemical lipid catabolism through peroxisome proliferator-activated receptor alpha(Pparα)or increasing mitochondrial fat oxidation in tilapia decreased tolerance to acute hypoxia by increasing oxygen consumption and oxidative damage and reducing carbohydrate catabolism as an energy source.Conversely,lipid catabolism inhibition by suppressing entry of lipids into mitochondria in tilapia or individually knocking out three key genes of lipid catabolism in zebrafish increased tolerance to acute hypoxia by decreasing oxygen consumption and oxidative damage and promoting carbohydrate catabolism.However,anaerobic glycolysis suppression eliminated lipid catabolism inhibition-promoted hypoxia tolerance in adipose triglyceride lipase(atgl)mutant zebrafish.Using 14 fish species with different trophic levels and taxonomic status,the fish preferentially using lipids for energy were more intolerant to acute hypoxia than those preferentially using carbohydrates.Our study shows that hypoxia tolerance in fish depends on catabolic preference for lipids or carbohydrates,which can be modified by regulating lipid catabolism.展开更多
17β-estradiol modulates the activity of D2 receptors in the regulation of food intake and body weight. The functional lack of 17β-estradiol in postmenopausal women could create a dietary imbalance and cause body wei...17β-estradiol modulates the activity of D2 receptors in the regulation of food intake and body weight. The functional lack of 17β-estradiol in postmenopausal women could create a dietary imbalance and cause body weight gain. This study aimed to better understand the interferences that could exist between 17β-estradiol, D2 receptors and the selection of carbohydrate, fat and protein consumption, as well as their consequences on body weight gain by using an animal model of the menopause. Ovariectomy exacerbates the consumption of foods rich in lipids. Thus confirming an inhibitory action of 17β-estradiol (E2) on the consumption of these types of foods. This consumption stimulates body weight gain, which is promoted by the high caloric content of these foods and not by the amount consumed. Our results showed a direct involvement of D2 receptors in food choice. This choice would be made according to the two (2) isoforms of the D2 receptors. The D2/BR isoform directs towards a high carbohydrate consumption, without causing a gain in body weight. While D2/SUL, promotes high fat food consumption, causing an increase in body weight. In women, 17β-estradiol modulates the activity ratio between these two D2 receptor isoforms to ensure energy and homeostatic balance, stabilizing food intake and body weight.展开更多
基金supported by the National Natural Science Foundation of China(31930078,32301559)the Ministry of Science and Technology of China(2021YFD2200405,2021YFD2200402)+1 种基金Fundamental Research Funds of CAF(CAFYBB2021ZW001)the program for scientific research start-up funds of Guangdong Ocean University。
文摘Biodiversity experiments have shown that soil organic carbon(SOC)is not only a function of plant diversity,but is also closely related to the nitrogen(N)-fixing plants.However,the effect of N-fixing trees on SOC chemical stability is still little known,especially with the compounding effects of tree species diversity.An experimental field manipulation was established in subtropical plantations of southern China to explore the impacts of tree species richness(i.e.,one,two,four and six tree species)and with/without N-fixing trees on SOC chemical stability,as indicated by the ratio of easily oxidized organic carbon to SOC(EOC/SOC).Plant-derived C components in terms of hydrolysable plant lipids and lignin phenols were isolated from soils for evaluating their relative contributions to SOC chemical stability.The results showed that N-fixing tree species rather than tree species richness had a significant effect on EOC/SOC.Hydrolysable plant lipids and lignin phenols were negatively correlated with EOC/SOC,while hydrolysable plant lipids contributed more to EOC/SOC than lignin phenols,especially in the occurrence of N-fixing trees.The presence of N-fixing tree species led to an increase in soil N availability and a decrease in fungal abundance,promoting the selective retention of certain key components of hydrolysable plant lipids,thus enhancing SOC chemical stability.These findings underpin the crucial role of N-fixing trees in shaping SOC chemical stability,and therefore,preferential selection of N-fixing tree species in mixed plantations is an appropriate silvicultural strategy to improve SOC chemical stability in subtropical plantations.
基金supported by a National Institute of Neurological Disorders and Stroke grant(R01 NS100839)a Sheffield Memorial Grant of the CSRA Parkinson’s Disease Support Group,and the excellent infrastructural support of the Department of Neuroscience and Regenerative Medicine,Medical College of Georgia at Augusta University(all to YI).
文摘Many patients with neurodegenerative diseases,such as Alzheimer’s(AD)and Parkinson’s(PD)diseases suffer from disease progression without any satisfying clinical intervention,likely due to our lack of knowledge on how normal aging impacts the pathogenic mechanisms of these debilitating diseases.A growing body of literature has emerged in recent years that clearly demonstrates the involvement of glycolipids in the protein-oligomerization of neurodegenerative disorders.We hypothesize that changes in glycolipids composition are a common mechanism underlying the shift from healthy brain aging to the neuropathological processes of neurodegenerative diseases.
文摘Parkinson's disease–A lipidopathy?The histopathological hallmark of Parkinson's disease(PD)and dementia with Lewy bodies are inclusions enriched inα-synuclein(α-syn),known as Lewy bodies,which are not only composed of proteins,but also a core of lipid species.PD has been thus far principally thought of as a“proteinopathy”caused by the misfolding of α-syn.
基金supported by China Medicine Education Association(CMEA)(No.2020KTS012)the National Natural Science Foundation of China(NSFC)(No.82002962 and No.81900189).
文摘Objective To investigate the serum lipid profiles of patients with localized osteosarcoma around the knee joint before and after neoadjuvant chemotherapy.Methods After retrospectively screening the data of 742 patients between January 2007 and July 2020,50 patients aged 13 to 39 years with Enneking stage II disease were included in the study.Serum lipid levels,including total cholesterol(TC),triglycerides(TG),high-density lipoprotein cholesterol(HDL-C),low-density lipoprotein cholesterol(LDL-C),lipoprotein-α[Lp(a)],and apolipoprotein A1,B,and E(ApoA1,ApoB,and ApoE),and clinicopathological characteristics were collected before and after neoadjuvant chemotherapy.Results The mean levels of TC,TG,and ApoB were significantly increased following neoadjuvant chemotherapy(16%,38%,and 20%,respectively,vs.pretreatment values;P<0.01).The mean levels of LDL-C and ApoE were also 19%and 16%higher,respectively(P<0.05).No correlation was found between the pretreatment lipid profile and the histologic response to chemotherapy.An increase in Lp(a)was strongly correlated with the Ki-67 index(R=0.31,P=0.023).Moreover,a trend toward longer disease-free survival(DFS)was observed in patients with decreased TG and increased LDL-C following chemotherapy,although this difference was not statistically significant(P=0.23 and P=0.24,respectively).Conclusion Significant elevations in serum lipids were observed after neoadjuvant chemotherapy in patients with localized osteosarcoma.There was no prognostic significance of pretreatment serum lipid levels on histologic response to neoadjuvant chemotherapy.The scale of increase in serum Lp(a)might have a potential prognostic role in osteosarcoma.Patients with increased LDL-C or reduced TG after chemotherapy seem to exhibit a trend toward favorable DFS.
基金National Science Foundation of China(82174093)Fundamental Research Funds for the Central Universities(BUCM-2019-JYB-JS-016).
文摘Objective To analyze the interactions between different structural types of volatile oil compo-nents(VOCs)and skin lipid molecules;and investigate the mechanism of volatile oil in Chi-nese materia medica(VOCMM)as penetration enhancers.Methods In this study;210 different structural types of VOCs were selected from the VOCMM penetration enhancer database;and the molecular docking experiments were conducted with three main lipid molecules of skin:ceramide 2(CER2);cholesterol(CHL);and free fatty acid(FFA).Each VOC was docked individually with each lipid molecule.Cluster analysis was used to explore the relationship between the binding energy of VOCs and their molecular struc-tures.Nine specific pathogen-free(SPF)Sprague Dawley(SD)rats were randomly divided in-to Control;Nootkatone;and 3-Butylidenephthalide groups for in vitro percutaneous experi-ments;with three rats in each group.The donor pool solutions were 3%gastrodin;3%gas-trodin+3%nootkatone;and 3%gastrodin+3%3-butylidenephthalide;respectively.The pen-etration enhancing effects of VOCs with higher binding energy were evaluated by comparing the 12-hour cumulative percutaneous absorption of gastrodin(Q12;µg/cm²).Results(i)Most of the VOCs were non-hydrogen bonded to the hydrophobic parts of CHL and FFA;and hydrogen bonded to the head group of CER2.Among them;sesquiterpene ox-ides showed the most pronounced binding affinity to CER2.The VOCs with 2-4 rings(in-cluding carbon rings;benzene rings;and heterocycles)demonstrated stronger binding affini-ty for three skin lipid molecules compared with the VOCs without intramolecular rings(P<0.01).(ii)According to the cluster analysis;most of the VOCs that bond well to CER2 had 2-3 intramolecular rings.The non-oxygenated VOCs were bonded to CER2 in a hydrophobic manner.The oxygenated VOCs were mostly bonded to CER2 by hydrogen bonding.(iii)The results of Franz diffusion cell experiment showed that the Q12 of Control group was 260.60±25.09µg/cm2;and the transdermal absorption of gastrodin was significantly increased in Nootkatone group(Q12=5503.00±1080.00µg/cm²;P<0.01).The transdermal absorption of gastrodin was also increased in 3-Butylidenephthalide group(Q12=495.40±56.98µg/cm²;P>0.05).(iv)The type of oxygen-containing functional groups in VOCs was also an influencing factor of binding affinity to CER2.Conclusion The interactions between different types of VOCs with different structures in the VOCMM and three skin lipid molecules in the stratum corneum were investigated at the molecular level in this paper.This research provided theoretical guidance and data support for the screening of volatile oil-based penetration enhancers;and a simple and rapid method for studying the penetration-enhancing mechanism of volatile oils.
文摘BACKGROUND Previous epidemiologic investigations have consistently demonstrated a strong association between the ratio of cholesterol to total lipids in medium very-lowdensity lipoprotein(VLDL)and the occurrence of peptic ulcers(PU).However,the precise causal relationship between these factors remains ambiguous.Consequently,this study aims to elucidate the potential correlation between the ratio of cholesterol to total lipids in medium VLDL and the incidence of peptic ulcer.AIM To investigate the ratio of cholesterol to total lipids in medium very-low-density lipoprotein(VLDL)association with PU via genetic methods,guiding future clinical research.METHODS Genome-wide association study(GWAS)datasets for the ratio of cholesterol to total lipids in intermediate VLDL and peptic ulcer were retrieved from the IEU OpenGWAS project(https://gwas.mrcieu.ac.uk).For the forward Mendelian randomization(MR)analysis,72 single nucleotide polymorphisms(SNPs)were identified as instrumental variables.These SNPs were selected based on their association with the ratio of cholesterol to total lipids in intermediate VLDL,with peptic ulcer as the outcome variable.Conversely,for the inverse MR analysis,no SNPs were identified with peptic ulcer as the exposure variable and the ratio of cholesterol to total lipids in intermediate VLDL as the outcome.All MR analyses utilized inverse variance weighted(IVW)as the primary analytical method.Additionally,weighted median and MR-Egger methods were employed as supplementary analytical approaches to assess causal effects.Egger regression was used as a supplementary method to evaluate potential directional pleiotropy.Heterogeneity and multiplicity tests were conducted using the leave-one-out method to evaluate result stability and mitigate biases associated with multiple testing.RESULTS The genetically predicted ratio of cholesterol to total lipids in medium VLDL was significantly associated with an elevated risk of peptic ulcer(IVW:OR=2.557,95%CI=1.274-5.132,P=0.008).However,no causal association of peptic ulcer with the ratio of cholesterol to total lipids in medium VLDL was observed in the inverse Mendelian randomization analysis.CONCLUSION In conclusion,our study reveals a significant association between the ratio of cholesterol to total lipids in medium VLDL and an elevated risk of peptic ulcers.However,further validation through laboratory investigations and larger-scale studies is warranted to strengthen the evidence and confirm the causal relationship between these factors.
基金Supported by the National Innovation Planning Project for University Students in 2022 in Guangxi(S202210599012).
文摘[Objectives]To explore the effects of the compatibility of Radix Puerariae and Radix Rehmanniae on blood glucose and blood lipids in diabetic mouses.[Methods]Diabetic mouse model was established.The body weight and fasting blood glucose of mice were measured after 7 and 14 d of administration,and the biochemical indicators of blood lipids(TC,HDL-C,and LDL-C)were detected after 14 d of administration.[Results]Compared with the Radix Puerariae group and Radix Rehmanniae group,the compatibility group(1:2)had the best hypoglycemic effect(P<0.05),and TC and LDL-C in the compatibility group(2:1)significantly decreased(P<0.05),while HDL-C in the compatibility group(1:1)significantly increased(P<0.05).[Conclusions]Radix Puerariae,Radix Rehmanniae and their combination can reduce the blood glucose of diabetic mice.The compatibility group(1:2)had a significant hypoglycemic effect(P<0.05),and LDL-C in the compatibility group(2:1)significantly declined,while HDL-C in the compatibility group(1:1)rose significantly.
文摘Objective:To investigate and analyze the annual physical examination results of retired employees from a unit in the civil aviation system,focusing on blood lipids,blood glucose,blood uric acid,and blood routine results.The study aims to provide relevant references for formulating reasonable disease management measures for preventing and controlling hyperlipidemia,hyperuricemia,and other conditions in retired employees.Methods:The examination results of 231 participants were collected and analyzed.The participants were divided into four groups based on age:middle-aged group,young-old group,middle-old group,and old-old group.The blood test results were compared across these groups,and an assessment of atherosclerotic cardiovascular disease(ASCVD)risk levels was completed in conjunction with medical history.Blood test results were also compared by gender.Results:There were no significant statistical differences in blood test results when grouped by age.However,the prevalence of hyperuricemia was higher in males than in females,while the prevalence of hypercholesterolemia was higher in females than in males.The LDL-C target achievement rate was lower in the moderate-and-high-risk group as well as the very high-risk group as defined by ASCVD risk levels.Conclusion:Management of hyperuricemia and hyperlipidemia in retired employees(elderly patients)should be strengthened to reduce the risk of ASCVD events and alleviate the potential medical burden associated with disease progression.
基金The 2022 Educational Teaching Reform and Research Project of Guangxi University of Traditional Chinese Medicine(2022C032).
文摘lipid-lowering interventions on the disease.Methods:Two-sample Mendelian randomization analyses were conducted to evaluate the associations of high-density lipoprotein cholesterol,low-density lipoprotein cholesterol,triglycerides,apolipoprotein B and apolipoprotein A-I levels with risks for sepsis,and those of low-density lipoprotein cholesterol(HMGCR,PCSK9,NPC1L1),triglycerides(LPL,ANGPTL3,APOC3)and high-density lipoprotein cholesterol(CETP),apolipoprotein A-I(CETP),apolipoprotein B(HMGCR,PCSK9,NPC1L1,LPL,APOC3)with sepsis.Results:HMGCR-mediated low-density lipoprotein cholesterol and apolipoprotein B were associated with an increased risk of sepsis,with an odds ratio value of 1.4(95%confidence interval(CI):1.06-1.84,P=0.017)and 1.41(95%CI:1.01-1.98,P=0.046).CETP-mediated high-density lipoprotein cholesterol and apolipoprotein A-I were associated with a reduced risk of sepsis,with an odds ratio of 0.87(95%CI:0.82-0.92,P<0.01)respectively and 0.84(95%CI:0.78-0.9,P<0.01).Sensitivity analysis showed that the results were robust.Conclusion:HMG-CoA reductase inhibitors and CETP inhibitors may contribute to the prevention and treatment of sepsis.
文摘The thought of using branched-chain amino acids (BCAA) in the prevention and treatment of certain disorders is becoming increasingly popular. Individual BCAA use has been associated with improving glucose tolerance and liver disease. Previous studies have cited improvements in glucose metabolism with a single dose of L-isoleucine (ILE). However, it is still unclear whether chronic consumption of ILE has any direct benefit. The objective of this study was to examine the influence of chronic ILE supplementation alone or in combination with exercise on fasting serum glucose, insulin, lipids, and lipoprotein cholesterol levels;glucose tolerance;and hepatic lipids in rats. Male Sprague-Dawley rats (n = 40) were divided into Control (low fructose diet);High Fructose diet (HF);HF plus 1.5% ILE (HF + ILE);HF plus exercise (HF + EX);and HF plus 1.5% ILE and exercise (HF + ILE + EX). The HF diets consisted of 70% kcalories from fructose. After 6 weeks of treatment, no significant differences were observed between groups for changes in fasting serum glucose, insulin, lipids, or lipoprotein cholesterol levels. However, hepatic total cholesterol was significantly lower in the HF + ILE + EX compared to the Control and HF, while, the HF + ILE had significantly lower hepatic free cholesterol compared to the HF. We also found no differences between groups for serum glucose response following an oral glucose tolerance test. In conclusion, our study shows that ILE supplementation in rats does not influence serum glucose and lipid biomarkers but may have an influence on lipid metabolic pathways within the liver.
基金financially supported by the National Natural Science Foundation of China,No.81303115,81774042 (both to XC)the Pearl River S&T Nova Program of Guangzhou,No.201806010025 (to XC)+3 种基金the Specialty Program of Guangdong Province Hospital of Chinese Medicine of China,No.YN2018ZD07 (to XC)the Natural Science Foundatior of Guangdong Province of China,No.2023A1515012174 (to JL)the Science and Technology Program of Guangzhou of China,No.20210201 0268 (to XC),20210201 0339 (to JS)Guangdong Provincial Key Laboratory of Research on Emergency in TCM,Nos.2018-75,2019-140 (to JS)
文摘Vascular etiology is the second most prevalent cause of cognitive impairment globally.Endothelin-1,which is produced and secreted by endothelial cells and astrocytes,is implicated in the pathogenesis of stroke.However,the way in which changes in astrocytic endothelin-1 lead to poststroke cognitive deficits following transient middle cerebral artery occlusion is not well understood.Here,using mice in which astrocytic endothelin-1 was overexpressed,we found that the selective overexpression of endothelin-1 by astrocytic cells led to ischemic stroke-related dementia(1 hour of ischemia;7 days,28 days,or 3 months of reperfusion).We also revealed that astrocytic endothelin-1 overexpression contributed to the role of neural stem cell proliferation but impaired neurogenesis in the dentate gyrus of the hippocampus after middle cerebral artery occlusion.Comprehensive proteome profiles and western blot analysis confirmed that levels of glial fibrillary acidic protein and peroxiredoxin 6,which were differentially expressed in the brain,were significantly increased in mice with astrocytic endothelin-1 overexpression in comparison with wild-type mice 28 days after ischemic stroke.Moreover,the levels of the enriched differentially expressed proteins were closely related to lipid metabolism,as indicated by Kyoto Encyclopedia of Genes and Genomes pathway analysis.Liquid chromatography-mass spectrometry nontargeted metabolite profiling of brain tissues showed that astrocytic endothelin-1 overexpression altered lipid metabolism products such as glycerol phosphatidylcholine,sphingomyelin,and phosphatidic acid.Overall,this study demonstrates that astrocytic endothelin-1 overexpression can impair hippocampal neurogenesis and that it is correlated with lipid metabolism in poststroke cognitive dysfunction.
基金supported by the National Natural Science Foundation of China(Grant Nos.:22176195 and 82127801)National Key R&D Program of China(Grant No.:2022YFF0705003)+5 种基金the Shenzhen Key Laboratory of Precision Diagnosis and Treatment of Depression(Grant No.:ZDSYS20220606100606014)the Guangdong Province Zhu Jiang Talents Plan,China(Grant No.:2021QN02Y028)the Natural Science Foundation of Guangdong Province,China(Grant No.:2021A1515010171)the Key Program of Fundamental Research in Shenzhen,China(Grant No.:JCYJ20210324115811031)the Sustainable Development Program of Shenzhen,China(Grant No.:KCXFZ202002011008124)the National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital&Shenzhen Hospital,Chinese Academy of Medical Sciences and Peking Union Medical College,Shenzhen(Grant Nos.:SZ2020ZD002 and SZ2020QN005).
文摘Esophageal cancer is an upper gastrointestinal malignancy with a bleak prognosis.It is still being explored in depth due to its complex molecular mechanisms of occurrence and development.Lipids play a crucial role in cells by participating in energy supply,biofilm formation,and signal transduction processes,and lipid metabolic reprogramming also constitutes a significant characteristic of malignant tumors.More and more studies have found esophageal cancer has obvious lipid metabolism abnormalities throughout its beginning,progress,and treatment resistance.The inhibition of tumor growth and the enhancement of antitumor therapy efficacy can be achieved through the regulation of lipid metabolism.Therefore,we reviewed and analyzed the research results and latest findings for lipid metabolism and associated analysis techniques in esophageal cancer,and comprehensively proved the value of lipid metabolic reprogramming in the evolution and treatment resistance of esophageal cancer,as well as its significance in exploring potential therapeutic targets and biomarkers.
文摘As a highly aggressive tumor,the pathophysiological mechanism of primary liver cancer has attracted much attention.In recent years,factors such as ferroptosis regulation,lipid peroxidation and metabolic abnormalities have emerged in the study of liver cancer,providing a new perspective for understanding the development of liver cancer.Ferroptosis regulation,lipid peroxidation and metabolic abnormalities play important roles in the occurrence and development of liver cancer.The regulation of ferroptosis is involved in apoptosis and necrosis,affecting cell survival and death.Lipid peroxidation promotes oxidative damage and promotes the invasion of liver cancer cells.Metabolic abnormalities,especially the disorders of glucose and lipid metabolism,directly affect the proliferation and growth of liver cancer cells.Studies of ferroptosis regulation and lipid peroxidation may help to discover new therapeutic targets and improve therapeutic outcomes.The understanding of metabolic abnormalities can provide new ideas for the prevention of liver cancer,and reduce the risk of disease by adjusting the metabolic process.This review focuses on the key roles of ferroptosis regulation,lipid peroxidation and metabolic abnormalities in this process.
基金supported by the Double Support Project (035–2221993229)。
文摘Background Adequate level of carbohydrates in aquafeeds help to conserve protein and reduce cost. However, studies have indicated that high-carbohydrate(HC) diet disrupt the homeostasis of the gut–liver axis in largemouth bass, resulting in decreased intestinal acetate and butyrate level.Method Herein, we had concepted a set of feeding experiment to assess the effects of dietary sodium acetate(SA) and sodium butyrate(SB) on liver health and the intestinal microbiota in largemouth bass fed an HC diet. The experimental design comprised 5 isonitrogenous and isolipidic diets, including LC(9% starch), HC(18% starch), HCSA(18% starch;2 g/kg SA), HCSB(18% starch;2 g/kg SB), and HCSASB(18% starch;1 g/kg SA + 1 g/kg SB). Juvenile largemouth bass with an initial body weight of 7.00 ± 0.20 g were fed on these diets for 56 d.Results We found that dietary SA and SB reduced hepatic triglyceride accumulation by activating autophagy(ATG101, LC3B and TFEB), promoting lipolysis(CPT1α, HSL and AMPKα), and inhibiting adipogenesis(FAS, ACCA, SCD1 and PPARγ). In addition, SA and SB decreased oxidative stress in the liver(CAT, GPX1α and SOD1) by activating the Keap1-Nrf2 pathway. Meanwhile, SA and SB alleviated HC-induced inflammation by downregulating the expression of pro-inflammatory factors(IL-1β, COX2 and Hepcidin1) through the NF-κB pathway. Importantly, SA and SB increased the abundance of bacteria that produced acetic acid and butyrate(Clostridium_sensu_stricto_1). Combined with the KEGG analysis, the results showed that SA and SB enriched carbohydrate metabolism and amino acid metabolism pathways, thereby improving the utilization of carbohydrates. Pearson correlation analysis indicated that growth performance was closely related to hepatic lipid deposition, autophagy, antioxidant capacity, inflammation, and intestinal microbial composition.Conclusions In conclusion, dietary SA and SB can reduce hepatic lipid deposition;and alleviate oxidative stress and inflammation in largemouth bass fed on HC diet. These beneficial effects may be due to the altered composition of the gut microbiota caused by SA and SB. The improvement effects of SB were stronger than those associated with SA.
基金Supported by the National Natural Science Foundation of China (Nos.31870027,42006125)the Guangdong Natural Science Foundation (No.2019B1515120062)。
文摘Paclobutrazol is a plant growth regulator and inhibitor of endogenous gibberellin synthesis.It is a powerful inhibitor of vegetative growth by changing the photosynthetic rate and plant hormone levels,thereby affecting plant growth and development.In this study,the effects of paclobutrazol on the model diatom Phaeodactylum tricornutum were investigated.Results show that 2.5-mg/L and 10-mg/L paclobutrazol significantly inhibited the algal growth by inhibiting chlorophyll synthesis,which affects photosynthesis.The antioxidant system,including catalase(CAT)and glutathione peroxidase(GPx)was severely damaged.Chrysolaminarin content was significantly elevated and doubled up to 127 mg/g dry cell weight(DCW)by 10-mg/L paclobutrazol treatment.In combination with transcriptomic analysis,paclobutrazol was demonstrated to play a regulatory role in the accumulation of chrysolaminarin and neutral lipids.
基金supported by Changsha Municipal Natural Science Foundation(Grant No.:kq2014265),the Construction Program of Hunan's innovative Province(CN)-High-tech Industry Science and Technology Innovation Leading Project(Project No.:2020SK2002)the Natural Science Foundation of Hunan Province(Grant No.:2023JJ40130)+1 种基金Postgraduate Scientific Research Innovation Project of Hunan Province(Project No.:CX20230317)the Changsha Platform and Talent Plan(kq2203002).
文摘Due to the non-targeted release and low solubility of anti-gastric cancer agent,apatinib(Apa),a first-line drug with long-term usage in a high dosage often induces multi-drug resistance and causes serious side effects.In order to avoid these drawbacks,lipid-film-coated Prussian blue nanoparticles(PB NPs)with hyaluronan(HA)modification was used for Apa loading to improve its solubility and targeting ability.Furthermore,anti-tumor compound of gamabufotalin(CS-6)was selected as a partner of Apawith reducing dosage for combinational gastric therapy.Thus,HA-Apa-Lip@PB-CS-6 NPs were constructed to synchronously transport the two drugs into tumor tissue.In vitro assay indicated that HA-Apa-Lip@PB-CS-6 NPs can synergistically inhibit proliferation and invasion/metastasis of BGC-823 cells via downregulating vascular endothelial growth factor receptor(VEGFR)and matrix metalloproteinase-9(MMP-9).In vivo assay demonstrated strongest anti-tumor growth and liver metastasis of HA-Apa-Lip@PB-CS-6 NPs administration in BGC-823 cells-bearing mice compared with other groups due to the excellent penetration in tumor tissues and outstanding synergistic effects.In summary,we have successfully developed a new nanocomplexes for synchronous Apa/CS-6 delivery and synergistic gastric cancer(GC)therapy.
基金National Natural Science Foundation of China,No.81460132Yunnan Pacific Department of Science,Technology-Kunming Medical University Applied Basic Research Joint Special Fund Project,No.2018FE001(-224).
文摘BACKGROUND Hepatocellular carcinoma(HCC)is one of the most common types of tumors.The influence of lipid metabolism disruption on the development of HCC has been demonstrated in published studies.AIM To establish an HCC prognostic model for lipid metabolism-related long non-coding RNAs(LMR-lncRNAs)and conduct in-depth research on the specific role of novel LMR-lncRNAs in HCC.METHODS Correlation and differential expression analyses of The Cancer Genome Atlas data were used to identify differentially expressed LMR-lncRNAs.Quantitative real-time polymerase chain reaction analysis was used to evaluate the expression of LMR-lncRNAs.Nile red staining was employed to observe intracellular lipid levels.The interaction between RP11-817I4.1,miR-3120-3p,and ATP citrate lyase(ACLY)was validated through the performance of dual-luciferase reporter gene and RIP assays.RESULTS Three LMR-lncRNAs(negative regulator of antiviral response,RNA transmembrane and coiled-coil domain family 1 antisense RNA 1,and RP11-817I4.1)were identified as predictive markers for HCC patients and were utilized in the construction of risk models.Additionally,proliferation,migration,and invasion were reduced by RP11-817I4.1 knockdown.An increase in lipid levels in HCC cells was significantly induced by RP11-817I4.1 through the miR-3120-3p/ACLY axis.CONCLUSION LMR-lncRNAs have the capacity to predict the clinical characteristics and prognoses of HCC patients,and the discovery of a novel LMR-lncRNAs,RP11-817I4.1,revealed its role in promoting lipid accumulation,thereby accelerating the onset and progression of HCC.
基金supported by the National Natural Science Foundation of China(82203185,82230058,82172875 and 82073094)the National Key Research and Development Program of China(2021YFF1201300 and 2022YFE0103600)+3 种基金the CAMS Innovation Fund for Medical Sciences(CIFMS)(2021-I2M-1-014,2021-I2M-1-022,and 2022-I2M-2-001)the Open Issue of State Key Laboratory of Molecular Oncology(SKL-KF-2021-16)the Independent Issue of State Key Laboratory of Molecular Oncology(SKL-2021-16)the Beijing Hope Marathon Special Fund of Chinese Cancer Foundation(LC2020B14).
文摘Background Triple negative breast cancer(TNBC),the most aggressive subtype of breast cancer,is characterized by a high incidence of brain metastasis(BrM)and a poor prognosis.As the most lethal form of breast cancer,BrM remains a major clinical challenge due to its rising incidence and lack of effective treatment strategies.Recent evidence suggested a potential role of lipid metabolic reprogramming in breast cancer brain metastasis(BCBrM),but the underlying mechanisms are far from being fully elucidated.Methods Through analysis of BCBrM transcriptome data from mice and patients,and immunohistochemical validation on patient tissues,we identified and verified the specific down-regulation of retinoic acid receptor responder 2(RARRES2),a multifunctional adipokine and chemokine,in BrM of TNBC.We investigated the effect of aberrant RARRES2 expression of BrM in both in vitro and in vivo studies.Key signaling pathway components were evaluated using multi-omics approaches.Lipidomics were performed to elucidate the regulation of lipid metabolic reprogramming of RARRES2.Results We found that downregulation of RARRES2 is specifically associated with BCBrM,and that RARRES2 deficiency promoted BCBrM through lipid metabolic reprogramming.Mechanistically,reduced expression of RARRES2 in brain metastatic potential TNBC cells resulted in increased levels of glycerophospholipid and decreased levels of triacylglycerols by regulating phosphatase and tensin homologue(PTEN)-mammalian target of rapamycin(mTOR)-sterol regulatory element-binding protein 1(SREBP1)signaling pathway to facilitate the survival of breast cancer cells in the unique brain microenvironment.Conclusions Our work uncovers an essential role of RARRES2 in linking lipid metabolic reprogramming and the development of BrM.RARRES2-dependent metabolic functions may serve as potential biomarkers or therapeutic targets for BCBrM.
基金supported by the National Natural Science Foundation of China (31830102,32202950)。
文摘Hypoxia is a common environmental stress factor in aquatic organisms,which varies among fish species.However,the mechanisms underlying the ability of fish species to tolerate hypoxia are not well known.Here,we showed that hypoxia response in different fish species was affected by lipid catabolism and preference for lipid or carbohydrate energy sources.Activation of biochemical lipid catabolism through peroxisome proliferator-activated receptor alpha(Pparα)or increasing mitochondrial fat oxidation in tilapia decreased tolerance to acute hypoxia by increasing oxygen consumption and oxidative damage and reducing carbohydrate catabolism as an energy source.Conversely,lipid catabolism inhibition by suppressing entry of lipids into mitochondria in tilapia or individually knocking out three key genes of lipid catabolism in zebrafish increased tolerance to acute hypoxia by decreasing oxygen consumption and oxidative damage and promoting carbohydrate catabolism.However,anaerobic glycolysis suppression eliminated lipid catabolism inhibition-promoted hypoxia tolerance in adipose triglyceride lipase(atgl)mutant zebrafish.Using 14 fish species with different trophic levels and taxonomic status,the fish preferentially using lipids for energy were more intolerant to acute hypoxia than those preferentially using carbohydrates.Our study shows that hypoxia tolerance in fish depends on catabolic preference for lipids or carbohydrates,which can be modified by regulating lipid catabolism.
文摘17β-estradiol modulates the activity of D2 receptors in the regulation of food intake and body weight. The functional lack of 17β-estradiol in postmenopausal women could create a dietary imbalance and cause body weight gain. This study aimed to better understand the interferences that could exist between 17β-estradiol, D2 receptors and the selection of carbohydrate, fat and protein consumption, as well as their consequences on body weight gain by using an animal model of the menopause. Ovariectomy exacerbates the consumption of foods rich in lipids. Thus confirming an inhibitory action of 17β-estradiol (E2) on the consumption of these types of foods. This consumption stimulates body weight gain, which is promoted by the high caloric content of these foods and not by the amount consumed. Our results showed a direct involvement of D2 receptors in food choice. This choice would be made according to the two (2) isoforms of the D2 receptors. The D2/BR isoform directs towards a high carbohydrate consumption, without causing a gain in body weight. While D2/SUL, promotes high fat food consumption, causing an increase in body weight. In women, 17β-estradiol modulates the activity ratio between these two D2 receptor isoforms to ensure energy and homeostatic balance, stabilizing food intake and body weight.