A study was conducted to explore the defense response in woody plants after insect herbivory. The activities of two enzymes, lipoxygenase (LOX), a key enzyme ofjasmonate (JA) pathway, and phenylalanine ammonia lya...A study was conducted to explore the defense response in woody plants after insect herbivory. The activities of two enzymes, lipoxygenase (LOX), a key enzyme ofjasmonate (JA) pathway, and phenylalanine ammonia lyase (PAL), a rate-limiting enzyme of phenyl- propanoid pathway, were measured in the leaves of one-year-old poplar (Populus simonii × P. pyramidalis 'Opera 8277') cuttings after Clostera anachoreta larvae attack. The results show that the increased activities of LOX and PAL were found not only in the leaves wounded by C. anachoreta larvae but also in their tipper systemic leaves, indicating that JA and phenylpropanoid pathways were activated, and the defense response was stimulated systemically. The increase in LOX and PAL activities in neighboring intact poplar cuttings sug- gested that there exists the interplant communication between poplar plants mediated by the herbivore-induced volatiles. Methyl jasmonate (MeJA) was also proved to be an airborne signal to induce defense response in P simonii × P pyramidalis 'Opera 8277' cuttings.展开更多
Osmotic stress caused by low-temperature,drought and salinity was a prevalent abiotic stress in plant that severely inhibited plant development and agricultural yield,particularly in tea plant.Jasmonic acid(JA)is an i...Osmotic stress caused by low-temperature,drought and salinity was a prevalent abiotic stress in plant that severely inhibited plant development and agricultural yield,particularly in tea plant.Jasmonic acid(JA)is an important phytohormone involving in plant stress.However,underlying molecular mechanisms of JA modulated osmotic stress response remains unclear.In this study,high concentration of mannitol induced JA accumulation and increase of peroxidase activity in tea plant.Integrated transcriptome mined a JA signaling master,MYC2 transcription factor is shown as a hub regulator that induced by mannitol,expression of which positively correlated with JA biosynthetic genes(LOX and AOS)and peroxidase genes(PER).CsMYC2 was determined as a nuclei-localized transcription activator,furthermore,ProteinDNA interaction analysis indicated that CsMYC2 was positive regulator that activated the transcription of CsLOX7,CsAOS2,CsPER1 and CsPER3via bound with their promoters,respectively.Suppression of CsMYC2 expression resulted in a reduced JA content and peroxidase activity and osmotic stress tolerance of tea plant.Overexpression of CsMYC2 in Arabidopsis improved JA content,peroxidase activity and plants tolerance against mannitol stress.Together,we proposed a positive feedback loop mediated by CsMYC2,CsLOX7 and CsAOS2 which constituted to increase the tolerance of osmotic stress through fine-tuning the accumulation of JA levels and increase of POD activity in tea plant.展开更多
Lipoxygenase (LOX, EC1.13.11.12) is a key enzyme during the degradation of lipids in animals and even plants, and also the first key enzyme responsible for the biosynthesis of jasmonate. To purify and characterize t...Lipoxygenase (LOX, EC1.13.11.12) is a key enzyme during the degradation of lipids in animals and even plants, and also the first key enzyme responsible for the biosynthesis of jasmonate. To purify and characterize the OsLOX1 gene from rice seeds, the entire coding region of the OsLOX1 gene was inserted into an expression vector pET30a(+) and transformed into Escherichia coil BL21 (DE3). Expression of the fusion protein was successfully induced by isopropyl-β-D- thiogalactopyranoside (IPTG) and the purified recombinant protein was obtained by His.Bind Kits. Further assay showed that the purified recombinant protein exhibited the LOX activity. The optimum pH was 4.8 (acetate buffer) and the optimum temperature was 30℃ for the above enzyme. Thus, the recombinant might confer an available usage for the synthesis of jasmonate in vitro, and also provides a possibility for elucidating the inter-relationship between the primary structure of the plant seed lipoxygenase protein and its physiological functions.展开更多
Background: Increased mitogen-activated protein kinase (MAPK) phosphorylation has been detected in peripheral nerve of human subjects and animal models with diabetes as well as high-glucose exposed human Schwann cells...Background: Increased mitogen-activated protein kinase (MAPK) phosphorylation has been detected in peripheral nerve of human subjects and animal models with diabetes as well as high-glucose exposed human Schwann cells, and have been implicated in diabetic peripheral neuropathy. In our recent studies, leukocytetype 12/15-lipoxygenase inhibition or gene deficiency alleviated large and small nerve fiber dysfunction, but not intraepidermal nerve fiber loss in streptozotocin-diabetic mice. Methods: To address a mechanism we evaluated the potential for pharmacological 12/15-lipoxygenase inhibition to counteract excessive MAPK phosphorylation in mouse and cell culture models of diabetic neuropathy. C57Bl6/J mice were made diabetic with streptozotocin and maintained with or without the 12/15-lipoxygenase inhibitor cinnamyl-3,4-dihydroxy-α-cyanocinnamate (CDC). Human Schwann cells were cultured in5.5 mMor30 mMglucose with or without CDC. Results: 12(S) HETE concentrations (ELISA), as well as 12/15-lipoxygenase expression and p38 MAPK, ERK, and SAPK/JNK phosphorylation (all by Western blot analysis) were increased in the peripheral nerve and spinal cord of diabetic mice as well as in high glucose-exposed human Schwann cells. CDC counteracted diabetes-induced increase in 12(S)HETE concentrations (a measure of 12/15-lipoxygenase activity), but not 12/15-lipoxygenase overexpression, in sciatic nerve and spinal cord. The inhibitor blunted excessive p38 MAPK and ERK, but not SAPK/ JNK, phosphorylation in sciatic nerve and high glucose exposed human Schwann cells, but did not affect MAPK, ERK, and SAPK/JNK phosphorylation in spinal cord. Conclusion: 12/15-lipoxygenase inhibition counteracts diabetes related MAPK phosphorylation in mouse and cell culture models of diabetic neuropathy and implies that 12/15-lipoxygenase inhibitors may be an effective treatment for diabetic peripheral neuropathy.展开更多
基金supported by the Pro-gramme for Changjiang Scholars and the Innovative Research Team in Universities of China (PCSIRT0607)by the National Natural Science Foundation of China (30871727+2 种基金 30872037)the National Key Project of Scientific and Technical Supporting Programmes Funded by the Ministry of Science & Technology of China (2006BAD01A15 2006BAD24B04)
文摘A study was conducted to explore the defense response in woody plants after insect herbivory. The activities of two enzymes, lipoxygenase (LOX), a key enzyme ofjasmonate (JA) pathway, and phenylalanine ammonia lyase (PAL), a rate-limiting enzyme of phenyl- propanoid pathway, were measured in the leaves of one-year-old poplar (Populus simonii × P. pyramidalis 'Opera 8277') cuttings after Clostera anachoreta larvae attack. The results show that the increased activities of LOX and PAL were found not only in the leaves wounded by C. anachoreta larvae but also in their tipper systemic leaves, indicating that JA and phenylpropanoid pathways were activated, and the defense response was stimulated systemically. The increase in LOX and PAL activities in neighboring intact poplar cuttings sug- gested that there exists the interplant communication between poplar plants mediated by the herbivore-induced volatiles. Methyl jasmonate (MeJA) was also proved to be an airborne signal to induce defense response in P simonii × P pyramidalis 'Opera 8277' cuttings.
基金supported by the National Natural Science Foundation of China(Grant Nos.32202542 and U20A2045)the Project of Major Science and Technology in Anhui Province(Grant No.202003a06020021)+2 种基金the Project of Science and Technology of Yunnan Province(Grant No.202102AE090038)Anhui Provincial Natural Science Foundation(Grant No.2108085QC121)the Natural Science Projects for Colleges and Universities in the Anhui Province(Grant No.KJ2021A0145)。
文摘Osmotic stress caused by low-temperature,drought and salinity was a prevalent abiotic stress in plant that severely inhibited plant development and agricultural yield,particularly in tea plant.Jasmonic acid(JA)is an important phytohormone involving in plant stress.However,underlying molecular mechanisms of JA modulated osmotic stress response remains unclear.In this study,high concentration of mannitol induced JA accumulation and increase of peroxidase activity in tea plant.Integrated transcriptome mined a JA signaling master,MYC2 transcription factor is shown as a hub regulator that induced by mannitol,expression of which positively correlated with JA biosynthetic genes(LOX and AOS)and peroxidase genes(PER).CsMYC2 was determined as a nuclei-localized transcription activator,furthermore,ProteinDNA interaction analysis indicated that CsMYC2 was positive regulator that activated the transcription of CsLOX7,CsAOS2,CsPER1 and CsPER3via bound with their promoters,respectively.Suppression of CsMYC2 expression resulted in a reduced JA content and peroxidase activity and osmotic stress tolerance of tea plant.Overexpression of CsMYC2 in Arabidopsis improved JA content,peroxidase activity and plants tolerance against mannitol stress.Together,we proposed a positive feedback loop mediated by CsMYC2,CsLOX7 and CsAOS2 which constituted to increase the tolerance of osmotic stress through fine-tuning the accumulation of JA levels and increase of POD activity in tea plant.
基金grants from the National Basic Research Program of China (Grant No. 2004CB2117204)the National High-tech Research and Development Program of China (Grant No. 2006AA100101)+1 种基金the National Program of Science Technology and Tackle Key Problem of Chinathe Program for Changjiang Scholars and Innovative Research Team in University (PCSIRT) of China
文摘Lipoxygenase (LOX, EC1.13.11.12) is a key enzyme during the degradation of lipids in animals and even plants, and also the first key enzyme responsible for the biosynthesis of jasmonate. To purify and characterize the OsLOX1 gene from rice seeds, the entire coding region of the OsLOX1 gene was inserted into an expression vector pET30a(+) and transformed into Escherichia coil BL21 (DE3). Expression of the fusion protein was successfully induced by isopropyl-β-D- thiogalactopyranoside (IPTG) and the purified recombinant protein was obtained by His.Bind Kits. Further assay showed that the purified recombinant protein exhibited the LOX activity. The optimum pH was 4.8 (acetate buffer) and the optimum temperature was 30℃ for the above enzyme. Thus, the recombinant might confer an available usage for the synthesis of jasmonate in vitro, and also provides a possibility for elucidating the inter-relationship between the primary structure of the plant seed lipoxygenase protein and its physiological functions.
文摘Background: Increased mitogen-activated protein kinase (MAPK) phosphorylation has been detected in peripheral nerve of human subjects and animal models with diabetes as well as high-glucose exposed human Schwann cells, and have been implicated in diabetic peripheral neuropathy. In our recent studies, leukocytetype 12/15-lipoxygenase inhibition or gene deficiency alleviated large and small nerve fiber dysfunction, but not intraepidermal nerve fiber loss in streptozotocin-diabetic mice. Methods: To address a mechanism we evaluated the potential for pharmacological 12/15-lipoxygenase inhibition to counteract excessive MAPK phosphorylation in mouse and cell culture models of diabetic neuropathy. C57Bl6/J mice were made diabetic with streptozotocin and maintained with or without the 12/15-lipoxygenase inhibitor cinnamyl-3,4-dihydroxy-α-cyanocinnamate (CDC). Human Schwann cells were cultured in5.5 mMor30 mMglucose with or without CDC. Results: 12(S) HETE concentrations (ELISA), as well as 12/15-lipoxygenase expression and p38 MAPK, ERK, and SAPK/JNK phosphorylation (all by Western blot analysis) were increased in the peripheral nerve and spinal cord of diabetic mice as well as in high glucose-exposed human Schwann cells. CDC counteracted diabetes-induced increase in 12(S)HETE concentrations (a measure of 12/15-lipoxygenase activity), but not 12/15-lipoxygenase overexpression, in sciatic nerve and spinal cord. The inhibitor blunted excessive p38 MAPK and ERK, but not SAPK/ JNK, phosphorylation in sciatic nerve and high glucose exposed human Schwann cells, but did not affect MAPK, ERK, and SAPK/JNK phosphorylation in spinal cord. Conclusion: 12/15-lipoxygenase inhibition counteracts diabetes related MAPK phosphorylation in mouse and cell culture models of diabetic neuropathy and implies that 12/15-lipoxygenase inhibitors may be an effective treatment for diabetic peripheral neuropathy.