Liquefaction is one of the most destructive phenomena caused by earthquakes,which has been studied in the issues of potential,triggering and hazard analysis.The strain energy approach is a common method to investigate...Liquefaction is one of the most destructive phenomena caused by earthquakes,which has been studied in the issues of potential,triggering and hazard analysis.The strain energy approach is a common method to investigate liquefaction potential.In this study,two Artificial Neural Network(ANN)models were developed to estimate the liquefaction resistance of sandy soil based on the capacity strain energy concept(W)by using laboratory test data.A large database was collected from the literature.One group of the dataset was utilized for validating the process in order to prevent overtraining the presented model.To investigate the complex influence of fine content(FC)on liquefaction resistance,according to previous studies,the second database was arranged by samples with FC of less than 28%and was used to train the second ANN model.Then,two presented ANN models in this study,in addition to four extra available models,were applied to an additional 20 new samples for comparing their results to show the capability and accuracy of the presented models herein.Furthermore,a parametric sensitivity analysis was performed through Monte Carlo Simulation(MCS)to evaluate the effects of parameters and their uncertainties on the liquefaction resistance of soils.According to the results,the developed models provide a higher accuracy prediction performance than the previously publishedmodels.The sensitivity analysis illustrated that the uncertainties of grading parameters significantly affect the liquefaction resistance of soils.展开更多
Recent studies using field case history data yielded new criteria for evaluating liquefaction potential in saturated granular deposits based on in situ, stress-corrected shear wave velocity. However, the conditions of...Recent studies using field case history data yielded new criteria for evaluating liquefaction potential in saturated granular deposits based on in situ, stress-corrected shear wave velocity. However, the conditions of relatively insufficient case histories and limited site conditions in this approach call for additional data to more reliably define liquefaction resistance as a function of shear wave velocity. In this study, a series of undrained cyclic triaxial tests were conducted on saturated sand with shear wave velocity Vs measured by bender element. By normalizing the data with respect to minimum void ratio, the test results, in-corporated with previously published laboratory data, statistically revealed good correlation of cyclic shear strength with small-strain shear modulus for sandy soils, which is almost irrespective of soil types and confining pressures. The consequently determined cyclic resistance ratio, CRR, was found to be approximately proportional to Vs4. Liquefaction resistance boundary curves were established by applying this relationship and compared to liquefaction criteria derived from seismic field measure-ments. Although in the range of Vs1>200 m/s the presented curves are moderately conservative, they are remarkably consistent with the published field performance criteria on the whole.展开更多
In this study the stress–strain characteristics of sand-ground rubber mixtures are investigated in the sandlike zone,at different confining pressures,using hollow cylinder specimens subjected to torsional monotonic a...In this study the stress–strain characteristics of sand-ground rubber mixtures are investigated in the sandlike zone,at different confining pressures,using hollow cylinder specimens subjected to torsional monotonic and cyclic loading.Under monotonic loading a mixture of sand-ground rubber with 10% and 25% rubber content show more contraction behaviour than that observed in a pure sand specimen.Phase transformation point in these mixtures are located on a larger shear strain.As expected,the shear strength of specimens decreases with increase of ground rubber content.However,with increasing of effective confining pressure,the loss in shear strength of the mixture is decreased.In addition,a mixture with 25% ground rubber shows a smaller loss in shear strength compared to a mixture with 10% ground rubber mixture.Under cyclic loading mixtures with 10% and 25% ground rubber have similar liquefaction resistance,especially at confining pressures of 110 k Pa and 260 k Pa.Therefore,by using of the mixture with 25% ground rubber,a larger volume of scrap tires could be recycled.The addition of ground rubber to sand would affect the shear strain variation and excess pore water pressure trends,and this effect was further intensified with increasing ground rubber percentage.展开更多
This paper presents a micromechanical study on the behavior of granular materials under confined shear using a three-dimensional Discrete Element Method (DEM). We consider rotational resistance among spherical parti...This paper presents a micromechanical study on the behavior of granular materials under confined shear using a three-dimensional Discrete Element Method (DEM). We consider rotational resistance among spherical particles in the DEM code as an approximate way to account for the effect of particle shape. Under undrained shear, it is found rotational resistance may help to increase the shear strength of a granular system and to enhance its resistance to liquefaction. The evolution of internal structure and anisotropy in granular systems with different initial conditions depict a clear bimodal character which distinguishes two contact subnetworks. In the presence of rotational resistance, a good correlation is found between an analytical stress-force-fabric relation and the DEM results, in which the normal force anisotropy plays a dominant role. The unique properties of critical state and liquefaction state in relation to granular anisotropy are also explored and discussed.展开更多
基金supported by the Scientific Innovation Group for Youths of Sichuan Province under Grant No.2019JDTD0017。
文摘Liquefaction is one of the most destructive phenomena caused by earthquakes,which has been studied in the issues of potential,triggering and hazard analysis.The strain energy approach is a common method to investigate liquefaction potential.In this study,two Artificial Neural Network(ANN)models were developed to estimate the liquefaction resistance of sandy soil based on the capacity strain energy concept(W)by using laboratory test data.A large database was collected from the literature.One group of the dataset was utilized for validating the process in order to prevent overtraining the presented model.To investigate the complex influence of fine content(FC)on liquefaction resistance,according to previous studies,the second database was arranged by samples with FC of less than 28%and was used to train the second ANN model.Then,two presented ANN models in this study,in addition to four extra available models,were applied to an additional 20 new samples for comparing their results to show the capability and accuracy of the presented models herein.Furthermore,a parametric sensitivity analysis was performed through Monte Carlo Simulation(MCS)to evaluate the effects of parameters and their uncertainties on the liquefaction resistance of soils.According to the results,the developed models provide a higher accuracy prediction performance than the previously publishedmodels.The sensitivity analysis illustrated that the uncertainties of grading parameters significantly affect the liquefaction resistance of soils.
基金Project supported by the National Natural Science Foundation of China (No. 10372089), and Department of Education of Zhejiang Province (No. 20010572), China
文摘Recent studies using field case history data yielded new criteria for evaluating liquefaction potential in saturated granular deposits based on in situ, stress-corrected shear wave velocity. However, the conditions of relatively insufficient case histories and limited site conditions in this approach call for additional data to more reliably define liquefaction resistance as a function of shear wave velocity. In this study, a series of undrained cyclic triaxial tests were conducted on saturated sand with shear wave velocity Vs measured by bender element. By normalizing the data with respect to minimum void ratio, the test results, in-corporated with previously published laboratory data, statistically revealed good correlation of cyclic shear strength with small-strain shear modulus for sandy soils, which is almost irrespective of soil types and confining pressures. The consequently determined cyclic resistance ratio, CRR, was found to be approximately proportional to Vs4. Liquefaction resistance boundary curves were established by applying this relationship and compared to liquefaction criteria derived from seismic field measure-ments. Although in the range of Vs1>200 m/s the presented curves are moderately conservative, they are remarkably consistent with the published field performance criteria on the whole.
文摘In this study the stress–strain characteristics of sand-ground rubber mixtures are investigated in the sandlike zone,at different confining pressures,using hollow cylinder specimens subjected to torsional monotonic and cyclic loading.Under monotonic loading a mixture of sand-ground rubber with 10% and 25% rubber content show more contraction behaviour than that observed in a pure sand specimen.Phase transformation point in these mixtures are located on a larger shear strain.As expected,the shear strength of specimens decreases with increase of ground rubber content.However,with increasing of effective confining pressure,the loss in shear strength of the mixture is decreased.In addition,a mixture with 25% ground rubber shows a smaller loss in shear strength compared to a mixture with 10% ground rubber mixture.Under cyclic loading mixtures with 10% and 25% ground rubber have similar liquefaction resistance,especially at confining pressures of 110 k Pa and 260 k Pa.Therefore,by using of the mixture with 25% ground rubber,a larger volume of scrap tires could be recycled.The addition of ground rubber to sand would affect the shear strain variation and excess pore water pressure trends,and this effect was further intensified with increasing ground rubber percentage.
基金supported by the Research Grants Council of Hong Kong through GRF 622910
文摘This paper presents a micromechanical study on the behavior of granular materials under confined shear using a three-dimensional Discrete Element Method (DEM). We consider rotational resistance among spherical particles in the DEM code as an approximate way to account for the effect of particle shape. Under undrained shear, it is found rotational resistance may help to increase the shear strength of a granular system and to enhance its resistance to liquefaction. The evolution of internal structure and anisotropy in granular systems with different initial conditions depict a clear bimodal character which distinguishes two contact subnetworks. In the presence of rotational resistance, a good correlation is found between an analytical stress-force-fabric relation and the DEM results, in which the normal force anisotropy plays a dominant role. The unique properties of critical state and liquefaction state in relation to granular anisotropy are also explored and discussed.