Various crosslinking agents can be added to the formulations of natural-based adhesives for wood bonding in order to achieve better durability and higher strength of the formed joints.In the present study,the effect o...Various crosslinking agents can be added to the formulations of natural-based adhesives for wood bonding in order to achieve better durability and higher strength of the formed joints.In the present study,the effect of hexamethylenediamine(HMDA)addition on the performance of liquefied wood(LW)adhesive for wood bonding is investigated.Differential scanning calorimetry showed the improved thermal stability and crosslinking of the LW adhesive with HMDA.The intensified presence of amide linkages(C–N bonds)was found in LW+HMDA with attenuated total reflection Fourier transform infrared spectroscopy.Analysis of the bonded joints using an automated bonding evaluation system showed that a higher press temperature resulted in stronger bonds for both types of adhesives.Moreover,the addition of HMDA to LW adhesive improved the bond strength of the joints and accelerated the crosslinking of the adhesive.However,with a tensile shear strength of(6.76±2.16)N×mm^(−2)(for LW)and(6.89±2.10)N×mm^(−2)(for LW+HMDA),both adhesives were found to be unsuitable for interior non-structural use.In addition,the acidity of LW resulted in relatively high wood failure(70%)in the adhesive joints tested.Improved crosslinking of LW with HMDA was reflected in improved resistance of LW+HMDA adhesive joints to water degradation.In conclusion,HMDA is a promising additive for improving the adhesive performance of LW adhesives.展开更多
Two schemes(scheme Ⅰ and scheme Ⅱ)for designing a district cooling system(DCS)utilizing cold energy of liquefied natural gas(LNG)are presented.In scheme Ⅰ,LNG cold energy is used to produce ice,and then ice i...Two schemes(scheme Ⅰ and scheme Ⅱ)for designing a district cooling system(DCS)utilizing cold energy of liquefied natural gas(LNG)are presented.In scheme Ⅰ,LNG cold energy is used to produce ice,and then ice is transported to the central cooling plant of the DCS.In scheme Ⅱ,return water from the DCS is directly chilled by LNG cold energy,and the chilled water is then sent back to the central plant.The heat transportation loss is the main negative impact in the DCS and is emphatically analyzed when evaluating the efficiency of each scheme.The results show that the DCS utilizing LNG cold energy is feasible and valuable.The cooling supply distance of scheme Ⅱ is limited within 13 km while scheme Ⅰ has no distance limit.When the distance is between 6 and 13 km,scheme Ⅱ is more practical and effective.Contrarily,scheme Ⅰ has a better economic performance when the distance is shorter than 6 km or longer than 13 km.展开更多
To investigate value in use of liquefied wood-based resin applications in molding material, Chinese fir (Cunninghamia lanceolata) and poplar (Populus tomentosa) wood meal were liquefied in phenol. The reactant was...To investigate value in use of liquefied wood-based resin applications in molding material, Chinese fir (Cunninghamia lanceolata) and poplar (Populus tomentosa) wood meal were liquefied in phenol. The reactant was co-condensed with formaldehyde to obtain liquefied wood-based resin. For this paper, we investigated the characterization of the resin and its application in molding material. The result shows that the basic properties of liquefied wood-based resin were satisfactory; the bonding strength of plywood prepared with liquefied Chinese fir and liquefied poplar resin can reach 1.54 and 1.00 MPa, respectively. The compression strengths of the molding material prepared with two kinds of liquefied wood resin were 73.01 and 73.58 MPa, almost the same as that of PF resin molding material. The limiting volume swelling of molding material made with liquefied Chinese resin and liquefied poplar resin were 8.5% and 8.3%, thickness swelling rates of water absorption were 3.3% and 4.2%, and the maximum weight ratios of water absorption were 25.9% and 26.2%, respectively. The soil burial test result shows that the weight loss rate of the molding materials made with liquefied Chinese resin and liquefied poplar resin were 8.3% and 9.1% and that of the PF resin molding material was 7.9%. After the soil internment test, the reduction ratio of compression strength of the two kinds of molding material achieved 16.9% and 17.7%, while that of the PF resin molding material was 15.4%. The test results of wood fungi inoculation on the three surfaces of the molding material indicate the breeding rate of molding material prepared with liquefied Chinese resin and liquefied poplar resin were at level 4 and that of PF resin molding material was at level 1 of the ISO standard.展开更多
The performance of four formulated solvents(labeled as UDS-I, UDS-II, UDS-III, and UDS-IV) for removing methyl mercaptan from liquefied petroleum gas was predicted based on a two-dimensional solubility parameter theor...The performance of four formulated solvents(labeled as UDS-I, UDS-II, UDS-III, and UDS-IV) for removing methyl mercaptan from liquefied petroleum gas was predicted based on a two-dimensional solubility parameter theory. The calculation results show that UDS-IV has the closest solubility parameter to that of methyl mercaptan as compared with other tested solvents, indicating the strongest affinity and the highest solubility for methyl mercaptan. The industrial tests at a plant for desulfurization of LPG produced from the delayed coker have shown that the UDS solvents have the excellent performance for removal of organosulfur compounds(mainly methyl mercaptan). Although the sulfur loading dramatically increases, the total sulfur content of LPG treated with UDS-IV can be reduced by about 50% in comparison with N-methyl diethanolamine. In addition, UDS-IV has superior regeneration performance and selectivity for sulfur compounds over hydrocarbons. The industrial test and the solubility parameter calculation results are in good agreement with each other.展开更多
A novel process to recovery natural gas liquids from oil field associated gas with liquefied natural gas (LNG)cryogenic energy utilization is proposed.Compared to the current electric refrigeration process,the propose...A novel process to recovery natural gas liquids from oil field associated gas with liquefied natural gas (LNG)cryogenic energy utilization is proposed.Compared to the current electric refrigeration process,the proposed process uses the cryogenic energy of LNG and saves 62.6%of electricity.The proposed process recovers ethane, liquid petroleum gas(propane and butane)and heavier hydrocarbons,with total recovery rate of natural gas liquids up to 96.8%.In this paper,exergy analysis and the energy utilization diagram method(EUD)are used to assess the new process and identify the key operation units with large exergy loss.The results show that exergy efficiency of the new process is 44.3%.Compared to the electric refrigeration process,exergy efficiency of the new process is improved by 16%.The proposed process has been applied and implemented in a conceptual design scheme of the cryogenic energy utilization for a 300 million tons/yr LNG receiving terminal in a northern Chinese harbor.展开更多
The detonation of an explosive atmosphere from liquefied petroleum gas disseminated in air in a confined space is studied using numerical modeling with software product ANSYS AUTODYN.
The submarine pipelines that are buried in the Yellow River subaqueous delta can be subject to fluctuant local-liquefied soil caused by storm wave action, possibly causing pipeline damage. An experimental investigatio...The submarine pipelines that are buried in the Yellow River subaqueous delta can be subject to fluctuant local-liquefied soil caused by storm wave action, possibly causing pipeline damage. An experimental investigation was carried out in a wave flume to study the horizontal normal force on buried rigid pipelines in fluctuant liquefied soil. In this experiment, the soil bed was made of silt from the Yellow River Delta, whereas a steel pipe served as pipeline. Under the experimental conditions, the normal force range on the pipeline in fluctuant liquefied soil was several times higher than that in stable soil, specifically on the side of the pipeline exposed to the wave direction. The resultant force of the horizontal normal forces on the buried pipeline grew by about one order of magnitude after soil liquefaction.展开更多
Liquefied natural gas(LNG)is regarded as one of the cleanest fossil fuel and has experienced significant developments in recent years.The liquefaction process of natural gas is energy-intensive,while the regasificatio...Liquefied natural gas(LNG)is regarded as one of the cleanest fossil fuel and has experienced significant developments in recent years.The liquefaction process of natural gas is energy-intensive,while the regasification of LNG gives out a huge amount of waste energy since plenty of high grade cold energy(-160℃)from LNG is released to sea water directly in most cases,and also sometimes LNG is burned for regasification.On the other hand,liquid air energy storage(LAES)is an emerging energy storage technology for applications such as peak load shifting of power grids,which generates 30%-40%of compression heat(-200℃).Such heat could lead to energy waste if not recovered and used.The recovery of the compression heat is technically feasible but requires additional capital investment,which may not always be economically attractive.Therefore,we propose a power plant for recovering the waste cryogenic energy from LNG regasification and compression heat from the LAES.The challenge for such a power plant is the wide working temperature range between the low-temperature exergy source(-160℃)and heat source(-200℃).Nitrogen and argon are proposed as the working fluids to address the challenge.Thermodynamic analyses are carried out and the results show that the power plant could achieve a thermal efficiency of 27%and 19%and an exergy efficiency of 40%and 28%for nitrogen and argon,respectively.Here,with the nitrogen as working fluid undergoes a complete Brayton Cycle,while the argon based power plant goes through a combined Brayton and Rankine Cycle.Besides,the economic analysis shows that the payback period of this proposed system is only 2.2 years,utilizing the excess heat from a 5 MW/40 MWh LAES system.The findings suggest that the waste energy based power plant could be co-located with the LNG terminal and LAES plant,providing additional power output and reducing energy waste.展开更多
This paper describes a mathematical model developed to study the behavior of liquefied petroleum gas (LPG) tanks when subjected to jet fire. The model consists of a number of field and zone sub-models which are used t...This paper describes a mathematical model developed to study the behavior of liquefied petroleum gas (LPG) tanks when subjected to jet fire. The model consists of a number of field and zone sub-models which are used to simulate the various physical phenomena taking place during the tank engulfment period. The model can be used to predict the pressure and temperature of the LPG in the tank, the temperature of the wall of tank, and the time of tank explosion. The comparisons between the model predicted results and the test data show good agreement. The results show that the jet fire partially impinging on tank wall led to higher wall temperature and the time to failure was shorter than that in engulfing pool fire. And the exposure of the upper wall in the vapor zone to the fire is more dangerous than that of the LPG contacted wall.展开更多
Liquefied natural gas(LNG) is the most economical way of transporting natural gas(NG) over long distances. Liquefaction of NG using vapor compression refrigeration system requires high operating and capital cost. Due ...Liquefied natural gas(LNG) is the most economical way of transporting natural gas(NG) over long distances. Liquefaction of NG using vapor compression refrigeration system requires high operating and capital cost. Due to lack of systematic design methods for multistage refrigeration cycles, conventional approaches to determine optimal cycle are largely trial-and-error. In this paper a novel mixed integer non-linear programming(MINLP)model is introduced to select optimal synthesis of refrigeration systems to reduce both operating and capital costs of an LNG plant. Better conceptual understanding of design improvement is illustrated on composite curve(CC) and exergetic grand composite curve(EGCC) of pinch analysis diagrams. In this method a superstructure representation of complex refrigeration system is developed to select and optimize key decision variables in refrigeration cycles(i.e. partition temperature, compression configuration, refrigeration features, refrigerant flow rate and economic trade-off). Based on this method a program(LNG-Pro) is developed which integrates VBA,Refprop and Excel MINLP Solver to automate the methodology. Design procedure is applied on a sample LNG plant to illustrate advantages of using this method which shows a 3.3% reduction in total shaft work consumption.展开更多
Wood of Chinese fir and poplar were liquefied in phenol at 150℃ and atmospheric pressure. The liquefied wood were reacted with formaldehyde to synthesize the liquefied wood-based resin. The factors affecting the resi...Wood of Chinese fir and poplar were liquefied in phenol at 150℃ and atmospheric pressure. The liquefied wood were reacted with formaldehyde to synthesize the liquefied wood-based resin. The factors affecting the resinification and the properties of new resin were investigated. The results show that the formaldehyde/liquefied wood molar ratio, reaction temperature, reaction time and sodium hydroxide/liquefied wood molar ratio have important influence on the resin characteristics. With the increase of formaldehyde/liquefied wood molar ratio, the yield of resin increases, and the flee phenol content of resins decreases, showing that the resinification of liquefied wood is more complete at higher formaldehyde/liquefied wood molar ratios. The reaction temperature on the viscosity of the liquefied resin has considerable effect; the viscosity of resin increased with increasing reaction temperature, and the amount of liquefied poplar resin increased more quickly than that of liquefied Chinese fir resin. The resinification time also has obvious influence on the viscosity of resin; the viscosity of liquefied poplar resin is more sensitive to resinification time compared with that of liquefied Chinese fir. The amount of sodium hydroxide can improve the water miscibility of liquefied wood resin. The optimum sodium hydroxide/liquefied wood molar ratio for preparation of liquefied wood-based resins exceeds 0.4.展开更多
AIM:To analyze and identify the proteomic differences between liquefied after-cataracts and normal lenses by means of liquefied chromatography-tandem mass spectrometry(LC-MS/MS).METHODS:Three normal lenses and thr...AIM:To analyze and identify the proteomic differences between liquefied after-cataracts and normal lenses by means of liquefied chromatography-tandem mass spectrometry(LC-MS/MS).METHODS:Three normal lenses and three liquefied after-cataracts were exposed to depolymerizing reagents to extract the total proteins.Protein concentrations were separated using two-dimensional gel electrophoresis(2-DE).The digitized images obtained with a GS-800 scanner were then analyzed with PDQuest7.0 software to detect the differentially-expressed protein spots.These protein spots were cut from the gel using a proteome work spot cutter and subjected to in-gel digestion with trypsin.The digested peptide separation was conducted by LC-MS/MS.RESULTS:The 2-DE maps showed that lens proteins were in a p H range of 3-10 with a relative molecular weight of21-70 kD.The relative molecular weight of the more abundant proteins was localized at 25-50 kD,and the isoelectric points were found to lie between PI 4-9.The maps also showed that the protein level within the liquefied after-cataracts was at 29 points and significantly lower than in normal lenses.The 29 points were identified by LC-MS/MS,and ten of these proteins were identified by mass spectrometry and database queries:beta-crystallin B1,glyceraldehyde-3-phosphate dehydrogenase,carbonyl reductase(NADPH)1,c DNA FLJ55253,gamma-crystallin D,GAS2-like protein 3,sorbitol dehydrogenase,DNA FLJ60282,phosphoglycerate kinase,and filensin.CONCLUSION:The level of the ten proteins may play an important role in the development of liquefied aftercataracts.展开更多
The liquefied product of Salixpsammophila wood was separated by thin-layer chromatography (TLC) and column chromatography, and its structure was identified by nuclear magnetic resonance (NMR) spectra in our study....The liquefied product of Salixpsammophila wood was separated by thin-layer chromatography (TLC) and column chromatography, and its structure was identified by nuclear magnetic resonance (NMR) spectra in our study. The separation result indicates that the sample of liquefied S. psammophila contained at least two categories of components. The structure of the main components was guaiacyl C-1, C-2 of the hydroxyphenyl propane, i.e., the aromatic nucleus protons of lignin. Degradation and polycondensation reactions occurred when the S. psammophila wood was liquefied in phenol. Polycondensation reactions occurred among the depolymerization products from cellulose, the aromatic depolymerization products from lignin and the products of the displacement reactions between phenoxide ion and cellulose.展开更多
Shell-and-tube vaporizers are the most commonly used and dominated types of vaporizers in liquefied natural gas (LNG) realm. Due to efficient performance, shell-side flow in this type of vaporizers has received cons...Shell-and-tube vaporizers are the most commonly used and dominated types of vaporizers in liquefied natural gas (LNG) realm. Due to efficient performance, shell-side flow in this type of vaporizers has received considerable attention and has been investigated extensively. However, the detailed flow structure in the shell needs to be determined for reliable and effective design. Therefore, the objective of this study was to clarify the flow structure in shell by particle image velocimetry (PIV). Experiments were conducted using two types of model; 15% baffle cut having inlet and outlet positions !n the direction of 90° to the cut and 30% baffle cut having inlet and outlet positions in the direction of 180° to the cut. Each test section is 169 mm in inner diameter and 344.6 mm in length. The flow features were characterized in different baffle cuts with regards to the velocity vector field and velocity distribution. The results show that the flow characteristics of 15% baffle cut type vaporizer are comparable to those of 30% baffle cut type vaporizer.展开更多
Tourmaline was modified with cerous nitrate and lanthanum nitrate by coprecipitation method. Through characterization by differential thermal analysis, transmission electron microscopy, X-ray diffraction, and Fourier ...Tourmaline was modified with cerous nitrate and lanthanum nitrate by coprecipitation method. Through characterization by differential thermal analysis, transmission electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy, it was found that the tourmaline modified with La-doped nano-CeOhad a better far infrared emitting property than the tourmaline modified with CeO2, which depended on La enhancing the redox properties of CeO, leaded to much more oxidation of Fe2+ to Fe3+ in the tourmaline. Based on the results of the water boiling test, it was found that the tourmaline modified with La-doped nano-CeOcould decrease the consumption of liquefied petroleum gas, which resulted from the tourmaline modified with La-doped nano-CeOdecreasing the molecular clusters volume of liquefied petroleum gas and combustion-supporting air.展开更多
The production and consumption of natural gas in China has been developing rapidly in recent years.It is expected that the annual growth rate of the demand for natural gas will reach 12% in the next 15 years,and the g...The production and consumption of natural gas in China has been developing rapidly in recent years.It is expected that the annual growth rate of the demand for natural gas will reach 12% in the next 15 years,and the gas consumption in the primary energy will increase from 0.3% to 10% or more by 2020.However,since the supply of natural gas cannot satisfy the requirements,China has begun to build liquefied natural gas(LNG)terminals in the coastal regions such as Guangdong and Fujian,and solve this problem by importing LNG from foreign countries.LNG needs to be transported by LNG ships from abroad.With the rapid growth of global gas production,the volume of LNG trade also increases,and the interregional production increased from 0.3% in 1970 to 26.2% in 2004.So,we need LNG ships more than before.This article puts forward the distribution of LNG ships and the speculation of the future of LNG transportation based on the studies on foreign LNG production,the LNG trade,the building of LNG ships,the LNG transportation,the chain model of LNG distribution,etc.展开更多
The reaction heat effect analysis for the aromatization process of Liquefied Petroleum Gas (LPG) was completed in this paper. In order to characterize this complex reaction system, one set of independent reactions was...The reaction heat effect analysis for the aromatization process of Liquefied Petroleum Gas (LPG) was completed in this paper. In order to characterize this complex reaction system, one set of independent reactions was determined by means of atomic coefficient matrix method. Based on reaction thermodynamic and stoichiometric knowledge, the heat effect, Gibbs free energy change and equilibrium constant for each independent reaction was calculated for the specified conditions. Under these conditions, based on the initial and final composition data from LPG aromatization experiments, the actual extent of reaction for each independent reaction was determined. Furthermore, the global reaction heat and adiabatic temperature rise of LPG aromatization reaction system could be estimated. This work would provide a theoretical guidance for the design and scale-up of reactor for LPG aromatization process, as well as for the selection of proper operating conditions.展开更多
To understand the characteristics of seismic response at liquefied sites, a liquefiable site and a non-liquefiable site were selected, separated by about 500 m and having the same site conditions as Class D in the Nat...To understand the characteristics of seismic response at liquefied sites, a liquefiable site and a non-liquefiable site were selected, separated by about 500 m and having the same site conditions as Class D in the National Earthquake Hazards Reduction Program (NEHRP). A suite of earthquake records on rock sites are selected and scaled to the spectrum of the Joyner, Boore, and Fumal (JBF) attenuation model for a magnitude 7.5 earthquake at a distance of 50 km. The scaled records were then used to excite the two sites. The effect of pore-water pressure was investigated using the effective stress analysis method, and nonlinear soil behavior was modeled by a soil bounding surface model. Comparisons for spectra, peak ground acceleration (PGA), peak ground displacement (PGD) and permanent displacement were performed. Results show that the mean ground response spectrum at the non-liquefied site is close to the estimated ground response spectrum from the JBF model, but the mean ground response spectrum at the liquefied site is much lower than the estimated ground response spectrum from the JBF model for periods of up to 1.3 s. The mean PGA at the non-liquefied site is about 1.6-1.7 times as large as that at the liquefied site, but the mean peak ground displacement (PGD) at the non-liquefied site has a slight difference with that at the liquefied site. The mean permanent displacements at the liquefied site are larger than those at the non-liquefied site, particularly at the liquefied layer.展开更多
This study utilized liquefied gases (LG) as extractant to remove various organic contaminants including halogenated hydrocarbons and phenols as well as aromatic compounds from aqueous matrices. Orthogonal experiments ...This study utilized liquefied gases (LG) as extractant to remove various organic contaminants including halogenated hydrocarbons and phenols as well as aromatic compounds from aqueous matrices. Orthogonal experiments were performed to optimize the operating conditions such as temperature, co solvents and so on. Under favorable conditions, high removal efficiencies can be readily achieved for a great number of representative model organic contaminants, the removal efficiencies for most of the hydrophobic contaminants were greater than 90% in a single extraction stage. Tentative effort was also done for the removal of extracted contaminants from recycled liquefied gases.展开更多
The multi-spring shear mechanism plastic model in this paper is defined in strain space to simulate pore pressure generation and development in sands under cyclic loading and undrained conditions, and the rotation of ...The multi-spring shear mechanism plastic model in this paper is defined in strain space to simulate pore pressure generation and development in sands under cyclic loading and undrained conditions, and the rotation of principal stresses can also be simulated by the model with cyclic behavior of anisotropic consolidated sands. Seismic residual deformations of typical caisson quay walls under different engineering situations are analyzed in detail by the plastic model, and then an index of liquefaction extent is applied to describe the regularity of seismic residual deformation of caisson quay wall top under different engineering situations. Some correlated prediction formulas are derived from the results of regression analysis between seismic residual deformation of quay wall top and extent of liquefaction in the relative safety backfill sand site. Finally, the rationality and the reliability of the prediction methods are validated by test results of a 120 g-centrifuge shaking table, and the comparisons show that some reliable seismic residual deformation of caisson quay can be predicted by appropriate prediction formulas and appropriate index of liquefaction extent.展开更多
文摘Various crosslinking agents can be added to the formulations of natural-based adhesives for wood bonding in order to achieve better durability and higher strength of the formed joints.In the present study,the effect of hexamethylenediamine(HMDA)addition on the performance of liquefied wood(LW)adhesive for wood bonding is investigated.Differential scanning calorimetry showed the improved thermal stability and crosslinking of the LW adhesive with HMDA.The intensified presence of amide linkages(C–N bonds)was found in LW+HMDA with attenuated total reflection Fourier transform infrared spectroscopy.Analysis of the bonded joints using an automated bonding evaluation system showed that a higher press temperature resulted in stronger bonds for both types of adhesives.Moreover,the addition of HMDA to LW adhesive improved the bond strength of the joints and accelerated the crosslinking of the adhesive.However,with a tensile shear strength of(6.76±2.16)N×mm^(−2)(for LW)and(6.89±2.10)N×mm^(−2)(for LW+HMDA),both adhesives were found to be unsuitable for interior non-structural use.In addition,the acidity of LW resulted in relatively high wood failure(70%)in the adhesive joints tested.Improved crosslinking of LW with HMDA was reflected in improved resistance of LW+HMDA adhesive joints to water degradation.In conclusion,HMDA is a promising additive for improving the adhesive performance of LW adhesives.
文摘Two schemes(scheme Ⅰ and scheme Ⅱ)for designing a district cooling system(DCS)utilizing cold energy of liquefied natural gas(LNG)are presented.In scheme Ⅰ,LNG cold energy is used to produce ice,and then ice is transported to the central cooling plant of the DCS.In scheme Ⅱ,return water from the DCS is directly chilled by LNG cold energy,and the chilled water is then sent back to the central plant.The heat transportation loss is the main negative impact in the DCS and is emphatically analyzed when evaluating the efficiency of each scheme.The results show that the DCS utilizing LNG cold energy is feasible and valuable.The cooling supply distance of scheme Ⅱ is limited within 13 km while scheme Ⅰ has no distance limit.When the distance is between 6 and 13 km,scheme Ⅱ is more practical and effective.Contrarily,scheme Ⅰ has a better economic performance when the distance is shorter than 6 km or longer than 13 km.
基金This study was financially supported by the National Natural Science Foundation of China (Grant No. 30471351).
文摘To investigate value in use of liquefied wood-based resin applications in molding material, Chinese fir (Cunninghamia lanceolata) and poplar (Populus tomentosa) wood meal were liquefied in phenol. The reactant was co-condensed with formaldehyde to obtain liquefied wood-based resin. For this paper, we investigated the characterization of the resin and its application in molding material. The result shows that the basic properties of liquefied wood-based resin were satisfactory; the bonding strength of plywood prepared with liquefied Chinese fir and liquefied poplar resin can reach 1.54 and 1.00 MPa, respectively. The compression strengths of the molding material prepared with two kinds of liquefied wood resin were 73.01 and 73.58 MPa, almost the same as that of PF resin molding material. The limiting volume swelling of molding material made with liquefied Chinese resin and liquefied poplar resin were 8.5% and 8.3%, thickness swelling rates of water absorption were 3.3% and 4.2%, and the maximum weight ratios of water absorption were 25.9% and 26.2%, respectively. The soil burial test result shows that the weight loss rate of the molding materials made with liquefied Chinese resin and liquefied poplar resin were 8.3% and 9.1% and that of the PF resin molding material was 7.9%. After the soil internment test, the reduction ratio of compression strength of the two kinds of molding material achieved 16.9% and 17.7%, while that of the PF resin molding material was 15.4%. The test results of wood fungi inoculation on the three surfaces of the molding material indicate the breeding rate of molding material prepared with liquefied Chinese resin and liquefied poplar resin were at level 4 and that of PF resin molding material was at level 1 of the ISO standard.
基金the financial support from the National Key Science and Technology Project of China (2011ZX05017-005)
文摘The performance of four formulated solvents(labeled as UDS-I, UDS-II, UDS-III, and UDS-IV) for removing methyl mercaptan from liquefied petroleum gas was predicted based on a two-dimensional solubility parameter theory. The calculation results show that UDS-IV has the closest solubility parameter to that of methyl mercaptan as compared with other tested solvents, indicating the strongest affinity and the highest solubility for methyl mercaptan. The industrial tests at a plant for desulfurization of LPG produced from the delayed coker have shown that the UDS solvents have the excellent performance for removal of organosulfur compounds(mainly methyl mercaptan). Although the sulfur loading dramatically increases, the total sulfur content of LPG treated with UDS-IV can be reduced by about 50% in comparison with N-methyl diethanolamine. In addition, UDS-IV has superior regeneration performance and selectivity for sulfur compounds over hydrocarbons. The industrial test and the solubility parameter calculation results are in good agreement with each other.
基金Supported by the National Natural Science Foundation of China(20876056,20536020)the PhD Program Fund from Ministry of Education of China(20100172110016)
文摘A novel process to recovery natural gas liquids from oil field associated gas with liquefied natural gas (LNG)cryogenic energy utilization is proposed.Compared to the current electric refrigeration process,the proposed process uses the cryogenic energy of LNG and saves 62.6%of electricity.The proposed process recovers ethane, liquid petroleum gas(propane and butane)and heavier hydrocarbons,with total recovery rate of natural gas liquids up to 96.8%.In this paper,exergy analysis and the energy utilization diagram method(EUD)are used to assess the new process and identify the key operation units with large exergy loss.The results show that exergy efficiency of the new process is 44.3%.Compared to the electric refrigeration process,exergy efficiency of the new process is improved by 16%.The proposed process has been applied and implemented in a conceptual design scheme of the cryogenic energy utilization for a 300 million tons/yr LNG receiving terminal in a northern Chinese harbor.
文摘The detonation of an explosive atmosphere from liquefied petroleum gas disseminated in air in a confined space is studied using numerical modeling with software product ANSYS AUTODYN.
基金funded by the National Natural Science Foundation of China (No. 41576039)
文摘The submarine pipelines that are buried in the Yellow River subaqueous delta can be subject to fluctuant local-liquefied soil caused by storm wave action, possibly causing pipeline damage. An experimental investigation was carried out in a wave flume to study the horizontal normal force on buried rigid pipelines in fluctuant liquefied soil. In this experiment, the soil bed was made of silt from the Yellow River Delta, whereas a steel pipe served as pipeline. Under the experimental conditions, the normal force range on the pipeline in fluctuant liquefied soil was several times higher than that in stable soil, specifically on the side of the pipeline exposed to the wave direction. The resultant force of the horizontal normal forces on the buried pipeline grew by about one order of magnitude after soil liquefaction.
基金partial support of UK EPSRC under grants EP/V012053/1,EP/S032622/1,EP/P004709/1,EP/P003605/1 and EP/N032888/1the British Council under 2020-RLWK12-10478 and 2019-RLWK11-10724。
文摘Liquefied natural gas(LNG)is regarded as one of the cleanest fossil fuel and has experienced significant developments in recent years.The liquefaction process of natural gas is energy-intensive,while the regasification of LNG gives out a huge amount of waste energy since plenty of high grade cold energy(-160℃)from LNG is released to sea water directly in most cases,and also sometimes LNG is burned for regasification.On the other hand,liquid air energy storage(LAES)is an emerging energy storage technology for applications such as peak load shifting of power grids,which generates 30%-40%of compression heat(-200℃).Such heat could lead to energy waste if not recovered and used.The recovery of the compression heat is technically feasible but requires additional capital investment,which may not always be economically attractive.Therefore,we propose a power plant for recovering the waste cryogenic energy from LNG regasification and compression heat from the LAES.The challenge for such a power plant is the wide working temperature range between the low-temperature exergy source(-160℃)and heat source(-200℃).Nitrogen and argon are proposed as the working fluids to address the challenge.Thermodynamic analyses are carried out and the results show that the power plant could achieve a thermal efficiency of 27%and 19%and an exergy efficiency of 40%and 28%for nitrogen and argon,respectively.Here,with the nitrogen as working fluid undergoes a complete Brayton Cycle,while the argon based power plant goes through a combined Brayton and Rankine Cycle.Besides,the economic analysis shows that the payback period of this proposed system is only 2.2 years,utilizing the excess heat from a 5 MW/40 MWh LAES system.The findings suggest that the waste energy based power plant could be co-located with the LNG terminal and LAES plant,providing additional power output and reducing energy waste.
文摘This paper describes a mathematical model developed to study the behavior of liquefied petroleum gas (LPG) tanks when subjected to jet fire. The model consists of a number of field and zone sub-models which are used to simulate the various physical phenomena taking place during the tank engulfment period. The model can be used to predict the pressure and temperature of the LPG in the tank, the temperature of the wall of tank, and the time of tank explosion. The comparisons between the model predicted results and the test data show good agreement. The results show that the jet fire partially impinging on tank wall led to higher wall temperature and the time to failure was shorter than that in engulfing pool fire. And the exposure of the upper wall in the vapor zone to the fire is more dangerous than that of the LPG contacted wall.
文摘Liquefied natural gas(LNG) is the most economical way of transporting natural gas(NG) over long distances. Liquefaction of NG using vapor compression refrigeration system requires high operating and capital cost. Due to lack of systematic design methods for multistage refrigeration cycles, conventional approaches to determine optimal cycle are largely trial-and-error. In this paper a novel mixed integer non-linear programming(MINLP)model is introduced to select optimal synthesis of refrigeration systems to reduce both operating and capital costs of an LNG plant. Better conceptual understanding of design improvement is illustrated on composite curve(CC) and exergetic grand composite curve(EGCC) of pinch analysis diagrams. In this method a superstructure representation of complex refrigeration system is developed to select and optimize key decision variables in refrigeration cycles(i.e. partition temperature, compression configuration, refrigeration features, refrigerant flow rate and economic trade-off). Based on this method a program(LNG-Pro) is developed which integrates VBA,Refprop and Excel MINLP Solver to automate the methodology. Design procedure is applied on a sample LNG plant to illustrate advantages of using this method which shows a 3.3% reduction in total shaft work consumption.
基金Supported by the Key Research Program Foundation, Ministry of Education of China (Grant No. 02021)and the National Science Foundation of China (Grant No. 30471351)
文摘Wood of Chinese fir and poplar were liquefied in phenol at 150℃ and atmospheric pressure. The liquefied wood were reacted with formaldehyde to synthesize the liquefied wood-based resin. The factors affecting the resinification and the properties of new resin were investigated. The results show that the formaldehyde/liquefied wood molar ratio, reaction temperature, reaction time and sodium hydroxide/liquefied wood molar ratio have important influence on the resin characteristics. With the increase of formaldehyde/liquefied wood molar ratio, the yield of resin increases, and the flee phenol content of resins decreases, showing that the resinification of liquefied wood is more complete at higher formaldehyde/liquefied wood molar ratios. The reaction temperature on the viscosity of the liquefied resin has considerable effect; the viscosity of resin increased with increasing reaction temperature, and the amount of liquefied poplar resin increased more quickly than that of liquefied Chinese fir resin. The resinification time also has obvious influence on the viscosity of resin; the viscosity of liquefied poplar resin is more sensitive to resinification time compared with that of liquefied Chinese fir. The amount of sodium hydroxide can improve the water miscibility of liquefied wood resin. The optimum sodium hydroxide/liquefied wood molar ratio for preparation of liquefied wood-based resins exceeds 0.4.
基金Supported by National Natural Science Foundation of China(No.81370996)
文摘AIM:To analyze and identify the proteomic differences between liquefied after-cataracts and normal lenses by means of liquefied chromatography-tandem mass spectrometry(LC-MS/MS).METHODS:Three normal lenses and three liquefied after-cataracts were exposed to depolymerizing reagents to extract the total proteins.Protein concentrations were separated using two-dimensional gel electrophoresis(2-DE).The digitized images obtained with a GS-800 scanner were then analyzed with PDQuest7.0 software to detect the differentially-expressed protein spots.These protein spots were cut from the gel using a proteome work spot cutter and subjected to in-gel digestion with trypsin.The digested peptide separation was conducted by LC-MS/MS.RESULTS:The 2-DE maps showed that lens proteins were in a p H range of 3-10 with a relative molecular weight of21-70 kD.The relative molecular weight of the more abundant proteins was localized at 25-50 kD,and the isoelectric points were found to lie between PI 4-9.The maps also showed that the protein level within the liquefied after-cataracts was at 29 points and significantly lower than in normal lenses.The 29 points were identified by LC-MS/MS,and ten of these proteins were identified by mass spectrometry and database queries:beta-crystallin B1,glyceraldehyde-3-phosphate dehydrogenase,carbonyl reductase(NADPH)1,c DNA FLJ55253,gamma-crystallin D,GAS2-like protein 3,sorbitol dehydrogenase,DNA FLJ60282,phosphoglycerate kinase,and filensin.CONCLUSION:The level of the ten proteins may play an important role in the development of liquefied aftercataracts.
基金supported by grants 200508010603 and 200711020504 from the key pro-ject of the Natural Science Foundation of the InnerMongolia Autonomous Region
文摘The liquefied product of Salixpsammophila wood was separated by thin-layer chromatography (TLC) and column chromatography, and its structure was identified by nuclear magnetic resonance (NMR) spectra in our study. The separation result indicates that the sample of liquefied S. psammophila contained at least two categories of components. The structure of the main components was guaiacyl C-1, C-2 of the hydroxyphenyl propane, i.e., the aromatic nucleus protons of lignin. Degradation and polycondensation reactions occurred when the S. psammophila wood was liquefied in phenol. Polycondensation reactions occurred among the depolymerization products from cellulose, the aromatic depolymerization products from lignin and the products of the displacement reactions between phenoxide ion and cellulose.
基金supported by the National Research Foundation of Korea Grant funded by the Korean Government (NRF-2010-013-D00007)2010 Research Professor Fund of Gyeongsang National University,Korea
文摘Shell-and-tube vaporizers are the most commonly used and dominated types of vaporizers in liquefied natural gas (LNG) realm. Due to efficient performance, shell-side flow in this type of vaporizers has received considerable attention and has been investigated extensively. However, the detailed flow structure in the shell needs to be determined for reliable and effective design. Therefore, the objective of this study was to clarify the flow structure in shell by particle image velocimetry (PIV). Experiments were conducted using two types of model; 15% baffle cut having inlet and outlet positions !n the direction of 90° to the cut and 30% baffle cut having inlet and outlet positions in the direction of 180° to the cut. Each test section is 169 mm in inner diameter and 344.6 mm in length. The flow features were characterized in different baffle cuts with regards to the velocity vector field and velocity distribution. The results show that the flow characteristics of 15% baffle cut type vaporizer are comparable to those of 30% baffle cut type vaporizer.
基金the Key Technologies R &D Programme of Tianjin (06YFGZGX02400)
文摘Tourmaline was modified with cerous nitrate and lanthanum nitrate by coprecipitation method. Through characterization by differential thermal analysis, transmission electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy, it was found that the tourmaline modified with La-doped nano-CeOhad a better far infrared emitting property than the tourmaline modified with CeO2, which depended on La enhancing the redox properties of CeO, leaded to much more oxidation of Fe2+ to Fe3+ in the tourmaline. Based on the results of the water boiling test, it was found that the tourmaline modified with La-doped nano-CeOcould decrease the consumption of liquefied petroleum gas, which resulted from the tourmaline modified with La-doped nano-CeOdecreasing the molecular clusters volume of liquefied petroleum gas and combustion-supporting air.
基金Under the auspices of the National Natural Science Foundation of China(No.40671052)
文摘The production and consumption of natural gas in China has been developing rapidly in recent years.It is expected that the annual growth rate of the demand for natural gas will reach 12% in the next 15 years,and the gas consumption in the primary energy will increase from 0.3% to 10% or more by 2020.However,since the supply of natural gas cannot satisfy the requirements,China has begun to build liquefied natural gas(LNG)terminals in the coastal regions such as Guangdong and Fujian,and solve this problem by importing LNG from foreign countries.LNG needs to be transported by LNG ships from abroad.With the rapid growth of global gas production,the volume of LNG trade also increases,and the interregional production increased from 0.3% in 1970 to 26.2% in 2004.So,we need LNG ships more than before.This article puts forward the distribution of LNG ships and the speculation of the future of LNG transportation based on the studies on foreign LNG production,the LNG trade,the building of LNG ships,the LNG transportation,the chain model of LNG distribution,etc.
文摘The reaction heat effect analysis for the aromatization process of Liquefied Petroleum Gas (LPG) was completed in this paper. In order to characterize this complex reaction system, one set of independent reactions was determined by means of atomic coefficient matrix method. Based on reaction thermodynamic and stoichiometric knowledge, the heat effect, Gibbs free energy change and equilibrium constant for each independent reaction was calculated for the specified conditions. Under these conditions, based on the initial and final composition data from LPG aromatization experiments, the actual extent of reaction for each independent reaction was determined. Furthermore, the global reaction heat and adiabatic temperature rise of LPG aromatization reaction system could be estimated. This work would provide a theoretical guidance for the design and scale-up of reactor for LPG aromatization process, as well as for the selection of proper operating conditions.
基金supported by the National Natural Science Foundation of China (No. 41030742)Technology Research of Railway Ministry (No. 2009G010-C)
文摘To understand the characteristics of seismic response at liquefied sites, a liquefiable site and a non-liquefiable site were selected, separated by about 500 m and having the same site conditions as Class D in the National Earthquake Hazards Reduction Program (NEHRP). A suite of earthquake records on rock sites are selected and scaled to the spectrum of the Joyner, Boore, and Fumal (JBF) attenuation model for a magnitude 7.5 earthquake at a distance of 50 km. The scaled records were then used to excite the two sites. The effect of pore-water pressure was investigated using the effective stress analysis method, and nonlinear soil behavior was modeled by a soil bounding surface model. Comparisons for spectra, peak ground acceleration (PGA), peak ground displacement (PGD) and permanent displacement were performed. Results show that the mean ground response spectrum at the non-liquefied site is close to the estimated ground response spectrum from the JBF model, but the mean ground response spectrum at the liquefied site is much lower than the estimated ground response spectrum from the JBF model for periods of up to 1.3 s. The mean PGA at the non-liquefied site is about 1.6-1.7 times as large as that at the liquefied site, but the mean peak ground displacement (PGD) at the non-liquefied site has a slight difference with that at the liquefied site. The mean permanent displacements at the liquefied site are larger than those at the non-liquefied site, particularly at the liquefied layer.
文摘This study utilized liquefied gases (LG) as extractant to remove various organic contaminants including halogenated hydrocarbons and phenols as well as aromatic compounds from aqueous matrices. Orthogonal experiments were performed to optimize the operating conditions such as temperature, co solvents and so on. Under favorable conditions, high removal efficiencies can be readily achieved for a great number of representative model organic contaminants, the removal efficiencies for most of the hydrophobic contaminants were greater than 90% in a single extraction stage. Tentative effort was also done for the removal of extracted contaminants from recycled liquefied gases.
基金supported by the Research Foundation of Jiangsu University of Science and Technology for Introducing Talents(Grant No. 35280901)
文摘The multi-spring shear mechanism plastic model in this paper is defined in strain space to simulate pore pressure generation and development in sands under cyclic loading and undrained conditions, and the rotation of principal stresses can also be simulated by the model with cyclic behavior of anisotropic consolidated sands. Seismic residual deformations of typical caisson quay walls under different engineering situations are analyzed in detail by the plastic model, and then an index of liquefaction extent is applied to describe the regularity of seismic residual deformation of caisson quay wall top under different engineering situations. Some correlated prediction formulas are derived from the results of regression analysis between seismic residual deformation of quay wall top and extent of liquefaction in the relative safety backfill sand site. Finally, the rationality and the reliability of the prediction methods are validated by test results of a 120 g-centrifuge shaking table, and the comparisons show that some reliable seismic residual deformation of caisson quay can be predicted by appropriate prediction formulas and appropriate index of liquefaction extent.