The performance of four formulated solvents(labeled as UDS-I, UDS-II, UDS-III, and UDS-IV) for removing methyl mercaptan from liquefied petroleum gas was predicted based on a two-dimensional solubility parameter theor...The performance of four formulated solvents(labeled as UDS-I, UDS-II, UDS-III, and UDS-IV) for removing methyl mercaptan from liquefied petroleum gas was predicted based on a two-dimensional solubility parameter theory. The calculation results show that UDS-IV has the closest solubility parameter to that of methyl mercaptan as compared with other tested solvents, indicating the strongest affinity and the highest solubility for methyl mercaptan. The industrial tests at a plant for desulfurization of LPG produced from the delayed coker have shown that the UDS solvents have the excellent performance for removal of organosulfur compounds(mainly methyl mercaptan). Although the sulfur loading dramatically increases, the total sulfur content of LPG treated with UDS-IV can be reduced by about 50% in comparison with N-methyl diethanolamine. In addition, UDS-IV has superior regeneration performance and selectivity for sulfur compounds over hydrocarbons. The industrial test and the solubility parameter calculation results are in good agreement with each other.展开更多
The detonation of an explosive atmosphere from liquefied petroleum gas disseminated in air in a confined space is studied using numerical modeling with software product ANSYS AUTODYN.
This paper describes a mathematical model developed to study the behavior of liquefied petroleum gas (LPG) tanks when subjected to jet fire. The model consists of a number of field and zone sub-models which are used t...This paper describes a mathematical model developed to study the behavior of liquefied petroleum gas (LPG) tanks when subjected to jet fire. The model consists of a number of field and zone sub-models which are used to simulate the various physical phenomena taking place during the tank engulfment period. The model can be used to predict the pressure and temperature of the LPG in the tank, the temperature of the wall of tank, and the time of tank explosion. The comparisons between the model predicted results and the test data show good agreement. The results show that the jet fire partially impinging on tank wall led to higher wall temperature and the time to failure was shorter than that in engulfing pool fire. And the exposure of the upper wall in the vapor zone to the fire is more dangerous than that of the LPG contacted wall.展开更多
Tourmaline was modified with cerous nitrate and lanthanum nitrate by coprecipitation method. Through characterization by differential thermal analysis, transmission electron microscopy, X-ray diffraction, and Fourier ...Tourmaline was modified with cerous nitrate and lanthanum nitrate by coprecipitation method. Through characterization by differential thermal analysis, transmission electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy, it was found that the tourmaline modified with La-doped nano-CeOhad a better far infrared emitting property than the tourmaline modified with CeO2, which depended on La enhancing the redox properties of CeO, leaded to much more oxidation of Fe2+ to Fe3+ in the tourmaline. Based on the results of the water boiling test, it was found that the tourmaline modified with La-doped nano-CeOcould decrease the consumption of liquefied petroleum gas, which resulted from the tourmaline modified with La-doped nano-CeOdecreasing the molecular clusters volume of liquefied petroleum gas and combustion-supporting air.展开更多
The reaction heat effect analysis for the aromatization process of Liquefied Petroleum Gas (LPG) was completed in this paper. In order to characterize this complex reaction system, one set of independent reactions was...The reaction heat effect analysis for the aromatization process of Liquefied Petroleum Gas (LPG) was completed in this paper. In order to characterize this complex reaction system, one set of independent reactions was determined by means of atomic coefficient matrix method. Based on reaction thermodynamic and stoichiometric knowledge, the heat effect, Gibbs free energy change and equilibrium constant for each independent reaction was calculated for the specified conditions. Under these conditions, based on the initial and final composition data from LPG aromatization experiments, the actual extent of reaction for each independent reaction was determined. Furthermore, the global reaction heat and adiabatic temperature rise of LPG aromatization reaction system could be estimated. This work would provide a theoretical guidance for the design and scale-up of reactor for LPG aromatization process, as well as for the selection of proper operating conditions.展开更多
A liquefied petroleum gas (LPG) sensor with high selectivity, sensitivity and low power consumption has been developed based on indium oxide with very low resistance. Nanocrystalline In203 gas sensing materials were...A liquefied petroleum gas (LPG) sensor with high selectivity, sensitivity and low power consumption has been developed based on indium oxide with very low resistance. Nanocrystalline In203 gas sensing materials were directly synthesized through a one-step controllable solvothermal process at 210 ℃ for 24 h, using InCI3.4H2O as the starting material, cetyltrimethyl ammonium bromide (CTAB) as additive and ethanol as the solvent. The obtained samples were characterized by X-ray diffraction (XRD), and transmission electron microscopy (TEM). The results showed that indium oxide takes on uniform cubic shape with range size of 10~30 nm and fine dispersivity. Gas sensitivity was measured in a mixing static gas. The results indicated that 3.0 V is the best working voltage of the sensor to LPG. Sensitivity is 12.6. The response-time and recovery-time are 3 s and 10 s respectively. Power consumption is only around 200 mW.展开更多
Temperature distribution and control have been investigated in a liquefiedpetroleum gas (LPG) fluidized bed with hollow corundum spheres (A1_2O_3) of 0.867-1.212 mm indiameter at moderately high temperatures (800-1100...Temperature distribution and control have been investigated in a liquefiedpetroleum gas (LPG) fluidized bed with hollow corundum spheres (A1_2O_3) of 0.867-1.212 mm indiameter at moderately high temperatures (800-1100℃). Experiments were carried out for the airconsumption coefficient α in the range of 0.3 to 1.0 and the fluidization number N in the range of1.3 to 3.0. Particle properties, initial bed height, α and N all affect temperature distribution inthe bed. Bed temperature can be adjusted about 200℃ by combined the adjusting of α and N.展开更多
This study carried out full-scale gas water heater combustion experiments and adopted FDS (fire dynamics simulator) to simulate three scenarios--different balcony environments when using water heater, such as airtig...This study carried out full-scale gas water heater combustion experiments and adopted FDS (fire dynamics simulator) to simulate three scenarios--different balcony environments when using water heater, such as airtight balcony, indoor door with openings and force ventilation to compare with full-scale combustion experiments. According to FDS simulation results, 02, CO and CO2 simulation concentration value correspond with full-scale experimental results. When the indoor O2 concentration was lower than 15%, which causes incomplete combustion, the CO concentration would rise rapidly and even reached above 1,500 ppm, causing death in short time. In addition, when the force ventilation model supplied the water heater with enough air to bum, the indoor CO concentration will keep low and harmless to humans. The study also adopted diverse variables, such as the opening area of window, outdoor wind speed and water heater types, to analyze deeply user's safety regarding gas water heater. In a result, while balcony area is larger than 14 mE, the volume of water heater is below 16 L (33.1 kW), and the indoor window, connecting balcony with room, is closed, if the opening on the outdoor window of the balcony is larger than 0.2 mE, this can ensure the personal security of the indoor space.展开更多
The present article reports the application of zinc ethyl silicate paint and the use of internal and external paint schemes on carbon steel spheres for the storage of liquefied petroleum gas. The new paint scheme elim...The present article reports the application of zinc ethyl silicate paint and the use of internal and external paint schemes on carbon steel spheres for the storage of liquefied petroleum gas. The new paint scheme eliminates the steps of blasting in the field and minimizes the collection of waste generated and the environmental impact, reducing the service time onsite and therefore providing a productivity gain and better health and cleanliness at work. The results were obtained through test runs and qualified in bodies-of-proof made with the same characteristics as the sphere, that is, using the same material (carbon steel), thickness, and mechanical formation and subject to the same conditions of design and implementation process. The paint scheme was approved, qualified, and committed to the supplier’s warranty with the paint manufacturer and assembler of the storage spheres for liquefied petroleum gas.展开更多
This paper presents a quantitative risk analysis of liquefied petroleum gas(LPG)transportation.An accident that happened on June 13,2020,on the highway near Wenling,China is studied as a case.In this accident,LPG carr...This paper presents a quantitative risk analysis of liquefied petroleum gas(LPG)transportation.An accident that happened on June 13,2020,on the highway near Wenling,China is studied as a case.In this accident,LPG carried by a tank truck on the highway leaked and caused a large explosion,which led to 20 deaths.Different methods are combined to calculate the consequence of the accident.Multi-energy model and rupture of vessel model are employed to calculate the overpressure;the simulation result of the multi-energy model is closer to the damage caused by the accident.The safety distances in accidents of LPG transport storage tanks of different capacities are calculated in this study;the results show that the damage of explosion will increase with the filling degree of the tank.Even though the filling degree is 90%(value required by law),the 99%fatality rate range will reach 42 m,which is higher than regulated distance between road and building.The social risk of the tank truck has also been calculated and the results show that the risk is not acceptable.The calculating method used in this study could evaluate the risk of LPG tanker more accurately,which may contribute to the establishment of transportation regulation so that losses from similar accidents in the future could be reduced.展开更多
In this study, the quality characteristics and residue analysis in circulated LPG fuel were investigated experimentally in Korea. Quality characteristics in circulated LPG fuel were examined with samples of LPG in the...In this study, the quality characteristics and residue analysis in circulated LPG fuel were investigated experimentally in Korea. Quality characteristics in circulated LPG fuel were examined with samples of LPG in the supply chain (refinery, petrochemical, and imported LPG), transport, gas stations, and vehicles. The experimental results showed that quality of all circulated LPG was well within the quality standard guideline of LPG in Korea. Especially, it has shown average 13 wt ppm in sulfur content over the full circulated LPG. The residue samples in LPG fuel were extracted on 2 L scale with acetonitrile and analyzed by gas chromatography-mass spectrometry (GC-MS). The components of residues in LPG were composed of 62 organic chemicals with C3 ~ C28 and the main ingredients of residue were plasticizers ((di-octyl phalate (DOP), di-octyl adiphate (DOA) etc.), lubricant oil and amine compounds. It was also showed that mass of residue in vehicles was increasing compared with supply (refinery, petrochemical, and imported LPG). It was presumed that this residue had been originated from automotive LPG fuel, vehicle components, and lubricant oil in infrastructure.展开更多
Direct synthesis of liquefied petroleum gas (LPG) from syngas was carried out over hybrid catalyst consisting of methanol synthesis catalyst and modified Y zeolite with Pd and Ca by different methods. The decrease o...Direct synthesis of liquefied petroleum gas (LPG) from syngas was carried out over hybrid catalyst consisting of methanol synthesis catalyst and modified Y zeolite with Pd and Ca by different methods. The decrease of CO conversion was mostly attributable to the sintering of Cu in methanol synthesis catalyst. On the other hand, coke deposition on Y zeolite was the reason for the decrease of LPG selectivity. The introduction of Ca decreased the strong acid sites of Y zeolite, suppressed coke formation, and thus improved the stability of hybrid catalyst.展开更多
基金the financial support from the National Key Science and Technology Project of China (2011ZX05017-005)
文摘The performance of four formulated solvents(labeled as UDS-I, UDS-II, UDS-III, and UDS-IV) for removing methyl mercaptan from liquefied petroleum gas was predicted based on a two-dimensional solubility parameter theory. The calculation results show that UDS-IV has the closest solubility parameter to that of methyl mercaptan as compared with other tested solvents, indicating the strongest affinity and the highest solubility for methyl mercaptan. The industrial tests at a plant for desulfurization of LPG produced from the delayed coker have shown that the UDS solvents have the excellent performance for removal of organosulfur compounds(mainly methyl mercaptan). Although the sulfur loading dramatically increases, the total sulfur content of LPG treated with UDS-IV can be reduced by about 50% in comparison with N-methyl diethanolamine. In addition, UDS-IV has superior regeneration performance and selectivity for sulfur compounds over hydrocarbons. The industrial test and the solubility parameter calculation results are in good agreement with each other.
文摘The detonation of an explosive atmosphere from liquefied petroleum gas disseminated in air in a confined space is studied using numerical modeling with software product ANSYS AUTODYN.
文摘This paper describes a mathematical model developed to study the behavior of liquefied petroleum gas (LPG) tanks when subjected to jet fire. The model consists of a number of field and zone sub-models which are used to simulate the various physical phenomena taking place during the tank engulfment period. The model can be used to predict the pressure and temperature of the LPG in the tank, the temperature of the wall of tank, and the time of tank explosion. The comparisons between the model predicted results and the test data show good agreement. The results show that the jet fire partially impinging on tank wall led to higher wall temperature and the time to failure was shorter than that in engulfing pool fire. And the exposure of the upper wall in the vapor zone to the fire is more dangerous than that of the LPG contacted wall.
基金the Key Technologies R &D Programme of Tianjin (06YFGZGX02400)
文摘Tourmaline was modified with cerous nitrate and lanthanum nitrate by coprecipitation method. Through characterization by differential thermal analysis, transmission electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy, it was found that the tourmaline modified with La-doped nano-CeOhad a better far infrared emitting property than the tourmaline modified with CeO2, which depended on La enhancing the redox properties of CeO, leaded to much more oxidation of Fe2+ to Fe3+ in the tourmaline. Based on the results of the water boiling test, it was found that the tourmaline modified with La-doped nano-CeOcould decrease the consumption of liquefied petroleum gas, which resulted from the tourmaline modified with La-doped nano-CeOdecreasing the molecular clusters volume of liquefied petroleum gas and combustion-supporting air.
文摘The reaction heat effect analysis for the aromatization process of Liquefied Petroleum Gas (LPG) was completed in this paper. In order to characterize this complex reaction system, one set of independent reactions was determined by means of atomic coefficient matrix method. Based on reaction thermodynamic and stoichiometric knowledge, the heat effect, Gibbs free energy change and equilibrium constant for each independent reaction was calculated for the specified conditions. Under these conditions, based on the initial and final composition data from LPG aromatization experiments, the actual extent of reaction for each independent reaction was determined. Furthermore, the global reaction heat and adiabatic temperature rise of LPG aromatization reaction system could be estimated. This work would provide a theoretical guidance for the design and scale-up of reactor for LPG aromatization process, as well as for the selection of proper operating conditions.
基金supported by the National Natural Science Foundation of China (Grant No.20471055)
文摘A liquefied petroleum gas (LPG) sensor with high selectivity, sensitivity and low power consumption has been developed based on indium oxide with very low resistance. Nanocrystalline In203 gas sensing materials were directly synthesized through a one-step controllable solvothermal process at 210 ℃ for 24 h, using InCI3.4H2O as the starting material, cetyltrimethyl ammonium bromide (CTAB) as additive and ethanol as the solvent. The obtained samples were characterized by X-ray diffraction (XRD), and transmission electron microscopy (TEM). The results showed that indium oxide takes on uniform cubic shape with range size of 10~30 nm and fine dispersivity. Gas sensitivity was measured in a mixing static gas. The results indicated that 3.0 V is the best working voltage of the sensor to LPG. Sensitivity is 12.6. The response-time and recovery-time are 3 s and 10 s respectively. Power consumption is only around 200 mW.
基金This work was financially suppoded by the Key Project Foundation for Science and Technology Research by the Education Ministry of China (No.00020).
文摘Temperature distribution and control have been investigated in a liquefiedpetroleum gas (LPG) fluidized bed with hollow corundum spheres (A1_2O_3) of 0.867-1.212 mm indiameter at moderately high temperatures (800-1100℃). Experiments were carried out for the airconsumption coefficient α in the range of 0.3 to 1.0 and the fluidization number N in the range of1.3 to 3.0. Particle properties, initial bed height, α and N all affect temperature distribution inthe bed. Bed temperature can be adjusted about 200℃ by combined the adjusting of α and N.
文摘This study carried out full-scale gas water heater combustion experiments and adopted FDS (fire dynamics simulator) to simulate three scenarios--different balcony environments when using water heater, such as airtight balcony, indoor door with openings and force ventilation to compare with full-scale combustion experiments. According to FDS simulation results, 02, CO and CO2 simulation concentration value correspond with full-scale experimental results. When the indoor O2 concentration was lower than 15%, which causes incomplete combustion, the CO concentration would rise rapidly and even reached above 1,500 ppm, causing death in short time. In addition, when the force ventilation model supplied the water heater with enough air to bum, the indoor CO concentration will keep low and harmless to humans. The study also adopted diverse variables, such as the opening area of window, outdoor wind speed and water heater types, to analyze deeply user's safety regarding gas water heater. In a result, while balcony area is larger than 14 mE, the volume of water heater is below 16 L (33.1 kW), and the indoor window, connecting balcony with room, is closed, if the opening on the outdoor window of the balcony is larger than 0.2 mE, this can ensure the personal security of the indoor space.
文摘The present article reports the application of zinc ethyl silicate paint and the use of internal and external paint schemes on carbon steel spheres for the storage of liquefied petroleum gas. The new paint scheme eliminates the steps of blasting in the field and minimizes the collection of waste generated and the environmental impact, reducing the service time onsite and therefore providing a productivity gain and better health and cleanliness at work. The results were obtained through test runs and qualified in bodies-of-proof made with the same characteristics as the sphere, that is, using the same material (carbon steel), thickness, and mechanical formation and subject to the same conditions of design and implementation process. The paint scheme was approved, qualified, and committed to the supplier’s warranty with the paint manufacturer and assembler of the storage spheres for liquefied petroleum gas.
基金the Research Project of National Engineering Research Center for Petroleum Refining Technology and Catalyst(RIPP,SINOPEC)the National Key Research and Development Program of China(No.2018YFC0808600)。
文摘This paper presents a quantitative risk analysis of liquefied petroleum gas(LPG)transportation.An accident that happened on June 13,2020,on the highway near Wenling,China is studied as a case.In this accident,LPG carried by a tank truck on the highway leaked and caused a large explosion,which led to 20 deaths.Different methods are combined to calculate the consequence of the accident.Multi-energy model and rupture of vessel model are employed to calculate the overpressure;the simulation result of the multi-energy model is closer to the damage caused by the accident.The safety distances in accidents of LPG transport storage tanks of different capacities are calculated in this study;the results show that the damage of explosion will increase with the filling degree of the tank.Even though the filling degree is 90%(value required by law),the 99%fatality rate range will reach 42 m,which is higher than regulated distance between road and building.The social risk of the tank truck has also been calculated and the results show that the risk is not acceptable.The calculating method used in this study could evaluate the risk of LPG tanker more accurately,which may contribute to the establishment of transportation regulation so that losses from similar accidents in the future could be reduced.
文摘In this study, the quality characteristics and residue analysis in circulated LPG fuel were investigated experimentally in Korea. Quality characteristics in circulated LPG fuel were examined with samples of LPG in the supply chain (refinery, petrochemical, and imported LPG), transport, gas stations, and vehicles. The experimental results showed that quality of all circulated LPG was well within the quality standard guideline of LPG in Korea. Especially, it has shown average 13 wt ppm in sulfur content over the full circulated LPG. The residue samples in LPG fuel were extracted on 2 L scale with acetonitrile and analyzed by gas chromatography-mass spectrometry (GC-MS). The components of residues in LPG were composed of 62 organic chemicals with C3 ~ C28 and the main ingredients of residue were plasticizers ((di-octyl phalate (DOP), di-octyl adiphate (DOA) etc.), lubricant oil and amine compounds. It was also showed that mass of residue in vehicles was increasing compared with supply (refinery, petrochemical, and imported LPG). It was presumed that this residue had been originated from automotive LPG fuel, vehicle components, and lubricant oil in infrastructure.
基金supported by the National Key Technology R & D Program of China(No.2011BAD22B06)BP Company through the Clean Energy Facing the Future Program at Dalian Institute of Chemical Physics
文摘Direct synthesis of liquefied petroleum gas (LPG) from syngas was carried out over hybrid catalyst consisting of methanol synthesis catalyst and modified Y zeolite with Pd and Ca by different methods. The decrease of CO conversion was mostly attributable to the sintering of Cu in methanol synthesis catalyst. On the other hand, coke deposition on Y zeolite was the reason for the decrease of LPG selectivity. The introduction of Ca decreased the strong acid sites of Y zeolite, suppressed coke formation, and thus improved the stability of hybrid catalyst.